6 resultados para Triglycerides

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste Oil has introduced plant oils and animal fats for the production of NExBTL renewable diesel, and these raw materials differ from the conventional mineral based oils. One subject of new raw materials study is thermal degradation, or in another name pyrolysis, of these organic oils and fats. The aim of this master’s thesis is to increase knowledge on thermal degradation of these new raw materials, and to identify possible gaseous harmful thermal degradation compounds. Another aim is to de-termine the health and environmental hazards of identified compounds. One objective is also to examine the formation possibilities of hazardous compounds in the produc-tion of NExBTL-diesel. Plant oils and animal fats consist mostly of triglycerides. Pyrolysis of triglycerides is a complex phenomenon, and many degradation products can be formed. Based on the literature studies, 13 hazardous degradation products were identified, one of which was acrolein. This compound is very toxic and dangerous to the environment. Own pyrolysis experiments were carried out with rapeseed and palm oils, and with a mix-ture of palm oil and animal fat. At least 12 hazardous compounds, including acrolein, were analysed from the gas phase. According to the experiments, the factors which influence on acrolein formation are the time of the experiment, the sphere (air/hydrogen) in which the experiment is carried out, and the characteristics of the used oil. The production of NExBTL-diesel is not based on pyrolysis. This is why thermal degradation is possible only when abnormal process conditions prevail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The risk of cardiovascular diseases and sleep-disordered breathing increases after menopause. This cross-sectional study focuses on overnight transcutaneous carbon dioxide (TcCO2) measurements and their power to predict changes in the early markers of cardiovascular and metabolic diseases. The endothelial function of the brachial artery, the intima-media thickness of the carotid artery, blood pressure, glycosylated hemoglobin A1C and plasma levels of cholesterols and triglycerides were used as markers of cardiovascular and metabolic diseases. The study subjects consisted of healthy premenopausal women of 46 years of age and postmenopausal women of 56 years of age. From wakefulness to sleep, the TcCO2 levels increased more in postmenopausal women than in premenopausal women. In estrogen-users the increase in TcCO2 levels was even more pronounced than in other postmenopausal women. From the dynamic behaviour of the nocturnal TcCO2 signal, several important features were detected. These TcCO2 features had a remarkable role in the prediction of endothelial dysfunction and thickening of the carotid wall in healthy premenopausal women. In addition, these TcCO2 features were linked with blood pressure, lipid profile and glucose balance in postmenopausal women. The nocturnal TcCO2 profile seems to contain significant information, which is associated with early changes in cardiovascular diseases in middle-aged women. TcCO2 might not only measure the tissue carbon dioxide levels, but the TcCO2 signal variation may also reflect peripheral vasodynamic events caused by increased sympathetic activity during sleep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lipotoxicity is a condition in which fatty acids (FAs) are not efficiently stored in adipose tissue and overflow to non-adipose tissue, causing organ damages. A defect of adipose tissue FA storage capability can be the primary culprit in the insulin resistance condition that characterizes many of the severe metabolic diseases that affect people nowadays. Obesity, in this regard, constitutes the gateway and risk factor of the major killers of modern society, such as cardiovascular disease and cancer. A deep understanding of the pathogenetic mechanisms that underlie obesity and the insulin resistance syndrome is a challenge for modern medicine. In the last twenty years of scientific research, FA metabolism and dysregulations have been the object of numerous studies. Development of more targeted and quantitative methodologies is required on one hand, to investigate and dissect organ metabolism, on the other hand to test the efficacy and mechanisms of action of novel drugs. The combination of functional and anatomical imaging is an answer to this need, since it provides more understanding and more information than we have ever had. The first purpose of this study was to investigate abnormalities of substrate organ metabolism, with special reference to the FA metabolism in obese drug-naïve subjects at an early stage of disease. Secondly, trimetazidine (TMZ), a metabolic drug supposed to inhibit FA oxidation (FAO), has been for the first time evaluated in obese subjects to test a whole body and organ metabolism improvement based on the hypothesis that FAO is increased at an early stage of the disease. A third objective was to investigate the relationship between ectopic fat accumulation surrounding heart and coronaries, and impaired myocardial perfusion in patients with risk of coronary artery disease (CAD). In the current study a new methodology has been developed with PET imaging with 11C-palmitate and compartmental modelling for the non-invasive in vivo study of liver FA metabolism, and a similar approach has been used to study FA metabolism in the skeletal muscle, the adipose tissue and the heart. The results of the different substudies point in the same direction. Obesity, at the an early stage, is associated with an impairment in the esterification of FAs in adipose tissue and skeletal muscle, which is accompanied by the upregulation in skeletal muscle, liver and heart FAO. The inability to store fat may initiate a cascade of events leading to FA oversupply to lean tissue, overload of the oxidative pathway, and accumulation of toxic lipid species and triglycerides, and it was paralleled by a proportional growth in insulin resistance. In subjects with CAD, the accumulation of ectopic fat inside the pericardium is associated with impaired myocardial perfusion, presumably via a paracrine/vasocrine effect. At the beginning of the disease, TMZ is not detrimental to health; on the contrary at the single organ level (heart, skeletal muscle and liver) it seems beneficial, while no relevant effects were found on adipose tissue function. Taken altogether these findings suggest that adipose tissue storage capability should be preserved, if it is not possible to prevent excessive fat intake in the first place.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brittleness is a well-known material characteristic but brittleness of paper is vaguely covered. The objective of this thesis was to characterize the phenomenon and causes around brittleness of paper and to clarify if it is a measurable property. Brittleness of paper was approached from the perspectives of paper physics and paper mills. Brittleness is a property of dry paper and it causes problems at the finishing stages of paper machine. According to paper physics, brittle materials fail in the elastic regime, while ductile materials can locally accumulate a plastic deformation prior to the fracture and they are often able to withstand higher stresses. Brittleness of paper is vastly affected by the surrounding conditions: paper as a hygroscopic material tries to get to the equilibrium. It is also affected by the quality of the pulp used. Measurement techniques can be divided into two categories: based on the viscoelastic behavior of paper and on the exposure to the mechanical stress of sort. The experimental part of the thesis was based on the trials with brittle and non-brittle mill-made LWC papers. It is divided into three parts: strength testing of the brittle and non-brittle papers, analysis of the conditions that may contribute the brittleness and the experimental methods to evaluate brittle behavior. The strength measurements confirmed the influence of the moisture content, but only tensile energy absorption and the fracture toughness measurements provided modest differences between the brittle and non-brittle papers. Versatile analysis of the possible contributing factors resulted into speculation, while the brittle papers contained higher amount of starch, triglycerides and steryl esters. The experimental research proved that the formation, the sensory impression and the variation of local strains may contain the crucial information of paper brittleness.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiac troponins (cTn) I and T are the current golden standard biochemical markers in the diagnosis and risk stratification of patients with suspected acute coronary syndrome. During the past few years, novel assays capable of detecting cTn‐concentrations in >50% of apparently healthy individuals have become readily available. With the emerging of these high sensitivity cTn assays, reductions in the assay specificity have caused elevations in the measured cTn levels that do not correlate with the clinical picture of the patient. The increased assay sensitivity may reveal that various analytical interference mechanisms exist. This doctoral thesis focused on developing nanoparticle‐assisted immunometric assays that could possibly be applied to an automated point‐of‐care system. The main objective was to develop minimally interference‐prone assays for cTnI by employing recombinant antibody fragments. Fast 5‐ and 15‐minute assays for cTnI and D‐dimer, a degradation product of fibrin, based on intrinsically fluorescent nanoparticles were introduced, thus highlighting the versatility of nanoparticles as universally applicable labels. The utilization of antibody fragments in different versions of the developed cTnI‐assay enabled decreases in the used antibody amounts without sacrificing assay sensitivity. In addition, the utilization of recombinant antibody fragments was shown to significantly decrease the measured cTnI concentrations in an apparently healthy population, as well as in samples containing known amounts of potentially interfering factors: triglycerides, bilirubin, rheumatoid factors, or human anti‐mouse antibodies. When determining the specificity of four commercially available antibodies for cTnI, two out of the four cross‐reacted with skeletal troponin I, but caused crossreactivity issues in patient samples only when paired together. In conclusion, the results of this thesis emphasize the importance of careful antibody selection when developing cTnI assays. The results with different recombinant antibody fragments suggest that the utilization of antibody fragments should strongly be encouraged in the immunoassay field, especially with analytes such as cTnI that require highly sensitive assay approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing demand for individualized, genotype-based health advice. The general population-based dietary recommendations do not always motivate people to change their life-style, and partly following this, cardiovascular diseases (CVD) are a major cause of death in worldwide. Using genotype-based nutrition and health information (e.g. nutrigenetics) in health education is a relatively new approach, although genetic variation is known to cause individual differences in response to dietary factors. Response to changes in dietary fat quality varies, for example, among different APOE genotypes. Research in this field is challenging, because several non-modifiable (genetic, age, sex) and modifiable (e.g. lifestyle, dietary, physical activity) factors together and with interaction affect the risk of life-style related diseases (e.g. CVD). The other challenge is the psychological factors (e.g. anxiety, threat, stress, motivation, attitude), which also have an effect on health behavior. The genotype-based information is always a very sensitive topic, because it can also cause some negative consequences and feelings (e.g. depression, increased anxiety). The aim of this series of studies was firstly to study how individual, genotype-based health information affects an individual’s health form three aspects, and secondly whether this could be one method in the future to prevent lifestyle-related diseases, such as CVD. The first study concentrated on the psychological effects; the focus of the second study was on health behavior effects, and the third study concentrated on clinical effects. In the fourth study of this series, the focus was on all these three aspects and their associations with each other. The genetic risk and health information was the APOE gene and its effects on CVD. To study the effect of APOE genotype-based health information in prevention of CVD, a total of 151 volunteers attended the baseline assessments (T0), of which 122 healthy adults (aged 20 – 67 y) passed the inclusion criteria and started the one-year intervention. The participants (n = 122) were randomized into a control group (n = 61) and an intervention group (n = 61). There were 21 participants in the intervention Ɛ4+ group (including APOE genotypes 3/4 and 4/4) and 40 participants in the intervention Ɛ4- group (including APOE genotypes 2/3 and 3/3). The control group included 61 participants (including APOE genotypes 3/4, 4/4, 2/3, 3/3 and 2/2). The baseline (T0) and follow-up assessments (T1, T2, T3) included detailed measurements of psychological (threat and anxiety experience, stage of change), and behavioral (dietary fat quality, consumption of vegetables, - high fat/sugar foods and –alcohol, physical activity and health and taste attitudes) and clinical factors (total-, LDL- HDL cholesterol, triglycerides, blood pressure, blood glucose (0h and 2h), body mass index, waist circumference and body fat percentage). During the intervention six different communication sessions (lectures on healthy lifestyle and nutrigenomics, health messages by mail, and personal discussion with the doctor) were arranged. The intervention groups (Ɛ4+ and Ɛ4-) received their APOE genotype information and health message at the beginning of the intervention. The control group received their APOE genotype information after the intervention. For the analyses in this dissertation, the results for 106/107 participants were analyzed. In the intervention, there were 16 participants in the high-risk (Ɛ4+) group and 35 in the low-risk (Ɛ4-) group. The control group had 55 participants in studies III-IV and 56 participants in studies I-II. The intervention had both short-term (≤ 6 months) and long-term (12 months) effects on health behavior and clinical factors. The short-term effects were found in dietary fat quality and waist circumference. Dietary fat quality improved more in the Ɛ4+ group than the Ɛ4- and the control groups as the personal, genotype-based health information and waist circumference lowered more in the Ɛ4+ group compared with the control group. Both these changes differed significantly between the Ɛ4+ and control groups (p<0.05). A long-term effect was found in triglyceride values (p<0.05), which lowered more in Ɛ4+ compared with the control group during the intervention. Short-term effects were also found in the threat experience, which increased mostly in the Ɛ4+ group after the genetic feedback (p<0.05), but it decreased after 12 months, although remaining at a higher level compared to the baseline (T0). In addition, Study IV found that changes in the psychological factors (anxiety and threat experience, motivation), health and taste attitudes, and health behaviors (dietary, alcohol consumption, and physical activity) did not directly explain the changes in triglyceride values and waist circumference. However, change caused by a threat experience may have affected the change in triglycerides through total- and HDL cholesterol. In conclusion, this dissertation study has given some indications that individual, genotypebased health information could be one potential option in the future to prevent lifestyle-related diseases in public health care. The results of this study imply that personal genetic information, based on APOE, may have positive effects on dietary fat quality and some cardiovascular risk markers (e.g., improvement in triglyceride values and waist circumference). This study also suggests that psychological factors (e.g. anxiety and threat experience) may not be an obstacle for healthy people to use genotype-based health information to promote healthy lifestyles. However, even in the case of very personal health information, in order to achieve a permanent health behavior change, it is important to include attitudes and other psychological factors (e.g. motivation), as well as intensive repetition and a longer intervention duration. This research will serve as a basis for future studies and its information can be used to develop targeted interventions, including health information based on genotyping that would aim at preventing lifestyle diseases. People’s interest in personalized health advices has increased, while also the costs of genetic screening have decreased. Therefore, generally speaking, it can be assumed that genetic screening as a part of the prevention of lifestyle-related diseases may become more common in the future. In consequence, more research is required about how to make genetic screening a practical tool in public health care, and how to efficiently achieve long-term changes.