12 resultados para Titanium(IV) oxide modified silica
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
University of Turku, Faculty of Medicine, Department of Cardiology and Cardiovascular Medicine, Doctoral Programme of Clinical Investigation, Heart Center, Turku University Hospital, Turku, Finland Division of Internal Medicine, Department of Cardiology, Seinäjoki Central Hospital, Seinäjoki, Finland Heart Center, Satakunta Central Hospital, Pori, Finland Annales Universitatis Turkuensis Painosalama Oy, Turku, Finland 2015 Antithrombotic therapy during and after coronary procedures always entails the challenging establishment of a balance between bleeding and thrombotic complications. It has been generally recommended to patients on long-term warfarin therapy to discontinue warfarin a few days prior to elective coronary angiography or intervention to prevent bleeding complications. Bridging therapy with heparin is recommended for patients at an increased risk of thromboembolism who require the interruption of anticoagulation for elective surgery or an invasive procedure. In study I, consecutive patients on warfarin therapy referred for diagnostic coronary angiography were compared to control patients with a similar disease presentation without warfarin. The strategy of performing coronary angiography during uninterrupted therapeutic warfarin anticoagulation appeared to be a relatively safe alternative to bridging therapy, if the international normalized ratio level was not on a supratherapeutic level. In-stent restenosis remains an important reason for failure of long-term success after a percutaneous coronary intervention (PCI). Drug-eluting stents (DES) reduce the problem of restenosis inherent to bare metal stents (BMS). However, a longer delay in arterial healing may extend the risk of stent thrombosis (ST) far beyond 30 days after the DES implantation. Early discontinuation of antiplatelet therapy has been the most important predisposing factor for ST. In study II, patients on long-term oral anticoagulant (OAC) underwent DES or BMS stenting with a median of 3.5 years’follow-up. The selective use of DESs with a short triple therapy seemed to be safe in OAC patients, since late STs were rare even without long clopidogrel treatment. Major bleeding and cardiac events were common in this patient group irrespective of stent type. In order to help to predict the bleeding risk in patients on OAC, several different bleeding risk scorings have been developed. Risk scoring systems have also been used also in the setting of patients undergoing a PCI. In study III, the predictive value of an outpatient bleeding risk index (OBRI) to identify patients at high risk of bleeding was analysed. The bleeding risk seemed not to modify periprocedural or long-term treatment choices in patients on OAC after a percutaneous coronary intervention. Patients with a high OBRI often had major bleeding episodes, and the OBRI may be suitable for risk evaluation in this patient group. Optical coherence tomography (OCT) is a novel technology for imaging intravascular coronary arteries. OCT is a light-based imaging modality that enables a 12–18 µm tissue axial resolution to visualize plaques in the vessel, possible dissections and thrombi as well as, stent strut appositions and coverage, and to measure the vessel lumen and lesions. In study IV, 30 days after titanium-nitride-oxide (TITANOX)-coated stent implantation, the binary stent strut coverage was satisfactory and the prevalence of malapposed struts was low as evaluated by OCT. Long-term clinical events in patients treated with (TITANOX)-coated bio-active stents (BAS) and paclitaxel-eluting stents (PES) in routine clinical practice were examined in study V. At the 3-year follow-up, BAS resulted in better long-term outcome when compared with PES with an infrequent need for target vessel revascularization. Keywords: anticoagulation, restenosis, thrombosis, bleeding, optical coherence tomography, titanium
Resumo:
Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).
Resumo:
Tässä työssä testattiin partikkelikokojakaumien analysoinnissa käytettävää kuvankäsittelyohjelmaa INCA Feature. Partikkelikokojakaumat määritettiin elektronimikroskooppikuvista INCA Feature ohjelmaa käyttäen partikkeleiden projektiokuvista päällystyspigmenttinä käytettävälle talkille ja kahdelle eri karbonaattilaadulle. Lisäksi määritettiin partikkelikokojakaumat suodatuksessa ja puhdistuksessa apuaineina käytettäville piidioksidi- ja alumiinioksidihiukkasille. Kuvankäsittelyohjelmalla määritettyjä partikkelikokojakaumia verrattiin partikkelin laskeutumisnopeuteen eli sedimentaatioon perustuvalla SediGraph 5100 analysaattorilla ja laserdiffraktioon perustuvalla Coulter LS 230 menetelmällä analysoituihin partikkelikokojakaumiin. SediGraph 5100 ja kuva-analyysiohjelma antoivat talkkipartikkelien kokojakaumalle hyvin samankaltaisen keskiarvon. Sen sijaan Coulter LS 230 laitteen antama kokojakauman keskiarvo poikkesi edellisistä. Kaikki vertailussa olleet partikkelikokojakaumamenetelmät asettivat eri näytteiden partikkelit samaan kokojärjestykseen. Kuitenkaan menetelmien tuloksia ei voida numeerisesti verrata toisiinsa, sillä kaikissa käytetyissä analyysimenetelmissä partikkelikoon mittaus perustuu partikkelin eri ominaisuuteen. Työn perusteella kaikki testatut analyysimenetelmät soveltuvat paperipigmenttien partikkelikokojakaumien määrittämiseen. Tässä työssä selvitettiin myös kuva-analyysiin tarvittava partikkelien lukumäärä, jolla analyysitulos on luotettava. Työssä todettiin, että analysoitavien partikkelien lukumäärän tulee olla vähintään 300 partikkelia. Liian suuri näytemäärä lisää kokojakauman hajontaa ja pidentää analyysiin käytettyä aikaa useaan tuntiin. Näytteenkäsittely vaatii vielä lisää tutkimuksia, sillä se on tärkein ja kriittisin vaihe SEM ja kuva-analyysiohjelmalla tehtävää partikkelikokoanalyysiä. Automaattisten mikroskooppien yleistyminen helpottaa ja nopeuttaa analyysien tekoa, jolloin menetelmän suosio tulee kasvamaan myös paperipigmenttien tutkimuksessa. Laitteiden korkea hinta ja käyttäjältä vaadittava eritysosaaminen tulevat rajaamaan käytön ainakin toistaiseksi tutkimuslaitoksiin.
Resumo:
Hydrogen (H2) fuel cells have been considered a promising renewable energy source. The recent growth of H2 economy has required highly sensitive, micro-sized and cost-effective H2 sensor for monitoring concentrations and alerting to leakages due to the flammability and explosiveness of H2 Titanium dioxide (TiO2) made by electrochemical anodic oxidation has shown great potential as a H2 sensing material. The aim of this thesis is to develop highly sensitive H2 sensor using anodized TiO2. The sensor enables mass production and integration with microelectronics by preparing the oxide layer on suitable substrate. Morphology, elemental composition, crystal phase, electrical properties and H2 sensing properties of TiO2 nanostructures prepared on Ti foil, Si and SiO2/Si substrates were characterized. Initially, vertically oriented TiO2 nanotubes as the sensing material were obtained by anodizing Ti foil. The morphological properties of tubes could be tailored by varying the applied voltages of the anodization. The transparent oxide layer creates an interference color phenomena with white light illumination on the oxide surface. This coloration effect can be used to predict the morphological properties of the TiO2 nanostructures. The crystal phase transition from amorphous to anatase or rutile, or the mixture of anatase and rutile was observed with varying heat treatment temperatures. However, the H2 sensing properties of TiO2 nanotubes at room temperature were insufficient. H2 sensors using TiO2 nanostructures formed on Si and SiO2/Si substrates were demonstrated. In both cases, a Ti layer deposited on the substrates by a DC magnetron sputtering method was successfully anodized. A mesoporous TiO2 layer obtained on Si by anodization in an aqueous electrolyte at 5°C showed diode behavior, which was influenced by the work function difference of Pt metal electrodes and the oxide layer. The sensor enabled the detection of H2 (20-1000 ppm) at low operating temperatures (50–140°C) in ambient air. A Pd decorated tubular TiO2 layer was prepared on metal electrodes patterned SiO2/Si wafer by anodization in an organic electrolyte at 5°C. The sensor showed significantly enhanced H2 sensing properties, and detected hydrogen in the range of a few ppm with fast response/recovery time. The metal electrodes placed under the oxide layer also enhanced the mechanical tolerance of the sensor. The concept of TiO2 nanostructures on alternative substrates could be a prospect for microelectronic applications and mass production of gas sensors. The gas sensor properties can be further improved by modifying material morphologies and decorating it with catalytic materials.
Resumo:
Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.
Resumo:
Ceramics are widely used in industrial applications due to their advantageous thermal and mechanical stability. Corrosion of ceramics is a great problem resulting in significant costs. Coating is one method of reducing adversities of corrosion. There are several different thin film deposition processes available such as sol-gel, Physical and Chemical Vapour Deposition (PVD and CVD). One of the CVD processes, called Atomic Layer Deposition (ALD) stands out for its excellent controllability, accuracy and wide process capability. The most commonly mentioned disadvantage of this method is its slowness which is partly compensated by its capability of processing large areas at once. Several factors affect the ALD process. Such factors include temperature, the grade of precursors, pulse-purge times and flux of precursors as well as the substrate used. Wrongly chosen process factors may cause loss of self-limiting growth and thus, non-uniformities in the deposited film. Porous substrates require longer pulse times than flat surfaces. The goal of this thesis was to examine the effects of ALD films on surface properties of a porous ceramic material. The analyses applied were for permeability, bubble point pressure and isoelectric point. In addition, effects of the films on corrosion resistance of the substrate in aqueous environment were investigated. After being exposured to different corrosive media the ceramics and liquid samples collected were analysed both mechanically and chemically. Visual and contentual differences between the exposed and coated ceramics versus the untreated and uncoated ones were analysed by scanning electron microscope. Two ALD film materials, dialuminium trioxide and titanium dioxide were deposited on the ceramic substrate using different pulse times. The results of both film materials indicated that surface properties of the ceramic material can be modified to some extent by the ALD method. The effect of the titanium oxide film on the corrosion resistance of the ceramic samples was observed to be fairly small regardless of the pulse time.
Resumo:
The general goal of the present work was to study whether spatial perceptual asymmetry initially observed in linguistic dichotic listening studies is related to the linguistic nature of the stimuli and/or is modality-specific, as well as to investigate whether the spatial perceptual/attentional asymmetry changes as a function of age and sensory deficit via praxis. Several dichotic listening studies with linguistic stimuli have shown that the inherent perceptual right ear advantage (REA), which presumably results from the left lateralized linguistic functions (bottom-up processes), can be modified with executive functions (top-down control). Executive functions mature slowly during childhood, are well developed in adulthood, and decline as a function of ageing. In Study I, the purpose was to investigate with a cross-sectional experiment from a lifespan perspective the age-related changes in top-down control of REA for linguistic stimuli in dichotic listening with a forced-attention paradigm (DL). In Study II, the aim was to determine whether the REA is linguistic-stimulus-specific or not, and whether the lifespan changes in perceptual asymmetry observed in dichotic listening would exist also in auditory spatial attention tasks that put load on attentional control. In Study III, using visual spatial attention tasks, mimicking the auditory tasks applied in Study II, it was investigated whether or not the stimulus-non-specific rightward spatial bias found in auditory modality is a multimodal phenomenon. Finally, as it has been suggested that the absence of visual input in blind participants leads to improved auditory spatial perceptual and cognitive skills, the aim in Study IV was to determine, whether blindness modifies the ear advantage in DL. Altogether 180-190 right-handed participants between 5 and 79 years of age were studied in Studies I to III, and in Study IV the performance of 14 blind individuals was compared with that of 129 normally sighted individuals. The results showed that only rightward spatial bias was observed in tasks with intensive attentional load, independent of the type of stimuli (linguistic vs. non-linguistic) or the modality (auditory vs. visual). This multimodal rightward spatial bias probably results from a complex interaction of asymmetrical perceptual, attentional, and/or motor mechanisms. Most importantly, the strength of the rightward spatial bias changed as a function of age and augmented praxis due to sensory deficit. The efficiency of the performance in spatial attention tasks and the ability to overcome the rightward spatial bias increased during childhood, was at its best in young adulthood, and decreased as a function of ageing. Between the ages of 5 and 11 years probably at first develops movement and impulse control, followed by the gradual development of abilities to inhibit distractions and disengage attention. The errors especially in bilateral stimulus conditions suggest that a mild phenomenon resembling extinction can be observed throughout the lifespan, but especially the ability to distribute attention to multiple targets simultaneously decreases in the course of ageing. Blindness enhances the processing of auditory bilateral linguistic stimuli, the ability to overcome a stimulus-driven laterality effect related to speech sound perception, and the ability to direct attention to an appropriate spatial location. It was concluded that the ability to voluntarily suppress and inhibit the multimodal rightward spatial bias changes as a function of age and praxis due to sensory deficit and probably reflects the developmental level of executive functions.
Resumo:
Bio-ethanol has been used as a fuel additive in modern society aimed at reducing CO2-emissions and dependence on oil. However, ethanol is unsuitable as fuel supplement in higher proportions due to its physico-chemical properties. One option to counteract the negative effects is to upgrade ethanol in a continuous fixed bed reactor to more valuable C4 products such as 1-butanol providing chemical similarity with traditional gasoline components. Bio-ethanol based valorization products also have other end-uses than just fuel additives. E.g. 1-butanol and ethyl acetate are well characterised industrial solvents and platform chemicals providing greener alternatives. The modern approach is to apply heterogeneous catalysts in the investigated reactions. The research was concentrated on aluminium oxide (Al2O3) and zeolites that were used as catalysts and catalyst supports. The metals supported (Cu, Ni, Co) gave very different product profiles and, thus, a profound view of different catalyst preparation methods and characterisation techniques was necessary. Additionally, acidity and basicity of the catalyst surface have an important role in determining the product profile. It was observed that ordinary determination of acid strength was not enough to explain all the phenomena e.g. the reaction mechanism. One of the main findings of the thesis is based on the catalytically active site which originates from crystallite structure. As a consequence, the overall evaluation of different by-products and intermediates was carried out by combining the information. Further kinetic analysis was carried out on metal (Cu, Ni, Co) supported self-prepared alumina catalysts. The thesis gives information for further catalyst developments aimed to scale-up towards industrially feasible operations.
Resumo:
Terpenes are a valuable natural resource for the production of fine chemicals. Turpentine, obtained from biomass and also as a side product of softwood industry, is rich in monoterpenes such as α-pinene and β-pinene, which are widely used as raw materials in the synthesis of flavors, fragrances and pharmaceutical compounds. The rearrangement of their epoxides has been thoroughly studied in recent years, as a method to obtain compounds which are further used in the fine chemical industry. The industrially most desired products of α-pinene oxide isomerization are campholenic aldehyde and trans-carveol. Campholenic aldehyde is an intermediate for the manufacture of sandalwood-like fragrances such as santalol. Trans-carveol is an expensive constituent of the Valencia orange essence oil used in perfume bases and food flavor composition. Furthermore it has been found to exhibit chemoprevention of mammary carcinogenesis. A wide range of iron and ceria supported catalysts were prepared, characterized and tested for α-pinene oxide isomerization in order to selective synthesis of above mentioned products. The highest catalytic activity in the preparation of campholenic aldehyde over iron modified catalysts using toluene as a solvent at 70 °C (total conversion of α-pinene oxide with a selectivity of 66 % to the desired aldehyde) was achieved in the presence of Fe-MCM-41. Furthermore, Fe-MCM-41 catalyst was successfully regenerated without deterioration of catalytic activity and selectivity. The most active catalysts in the synthesis of trans-carveol from α-pinene oxide over iron and ceria modified catalysts in N,N-dimethylacetamide as a solvent at 140 °C (total conversion of α-pinene oxide with selectivity 43 % to trans-carveol) were Fe-Beta-300 and Ce-Si-MCM-41. These catalysts were further tested for an analogous reaction, namely verbenol oxide isomerization. Verbenone is another natural organic compound which can be found in a variety of plants or synthesized by allylic oxidation of α-pinene. An interesting product which is synthesized from verbenone is (1R,2R,6S)-3-methyl-6-(prop-1-en-2-yl)cyclohex-3-ene-1,2-diol. It has been discovered that this diol possesses potent anti-Parkinson activity. The most effective way leading to desired diol starts from verbenone and includes three stages: epoxidation of verbenone to verbenone oxide, reduction of verbenone oxide and subsequent isomerization of obtained verbenol oxide, which is analogous to isomerization of α-pinene oxide. In the research focused on the last step of these synthesis, high selectivity (82 %) to desired diol was achieved in the isomerization of verbenol oxide at a conversion level of 96 % in N,N-dimethylacetamide at 140 °C using iron modified zeolite, Fe-Beta-300. This reaction displayed surprisingly high selectivity, which has not been achieved yet. The possibility of the reuse of heterogeneous catalysts without activity loss was demonstrated.
Resumo:
Carbon dioxide is regarded, nowadays, as a primary anthropogenic greenhouse gas leading to global warming. Hence, chemical fixation of CO2 has attracted much attention as a possible way to manufacture useful chemicals. One of the most interesting approaches of CO2 transformations is the synthesis of organic carbonates. Since conventional production technologies of these compounds involve poisonous phosgene and carbon monoxide, there is a need to develop novel synthetic methods that would better match the principles of "Green Chemistry" towards protection of the environment and human health. Over the years, synthesis of dimethyl carbonate was under intensive investigation in the academia and industry. Therefore, this study was entirely directed towards equally important homologue of carbonic esters family namely diethyl carbonate (DEC). Novel synthesis method of DEC starting from ethanol and CO2 over heterogeneous catalysts based on ceria (CeO2) was studied in the batch reactor. However, the plausible drawback of the reaction is thermodynamic limitations. The calculated values revealed that the reaction is exothermic (ΔrHØ298K = ─ 16.6 J/ ) and does not occur spontaneously at rooms temperature (ΔrGØ 298K = 35.85 kJ/mol). Moreover, co-produced water easily shifts the reaction equilibrium towards reactants excluding achievement of high yields of the carbonate. Therefore, in-situ dehydration has been applied using butylene oxide as a chemical water trap. A 9-fold enhancement in the amount of DEC was observed upon introduction of butylene oxide to the reaction media in comparison to the synthetic method without any water removal. This result confirms that reaction equilibrium was shifted in favour of the desired product and thermodynamic boundaries of the reaction were suppressed by using butylene oxide as a water scavenger. In order to obtain insight into the reaction network, the kinetic experiments were performed over commercial cerium oxide. On the basis of the selectivity/conversion profile it could be concluded that the one-pot synthesis of diethyl carbonate from ethanol, CO2 and butylene oxide occurs via a consecutive route involving cyclic carbonate as an intermediate. Since commercial cerium oxide suffers from the deactivation problems already after first reaction cycle, in-house CeO2 was prepared applying room temperature precipitation technique. Variation of the synthesis parameters such as synthesis time, calcination temperature and pH of the reaction solution turned to have considerable influence on the physico-chemical and catalytic properties of CeO2. The increase of the synthesis time resulted in high specific surface area of cerium oxide and catalyst prepared within 50 h exhibited the highest amount of basic sites on its surface. Furthermore, synthesis under pH 11 yielded cerium oxide with the highest specific surface area, 139 m2/g, among all prepared catalysts. Moreover, CeO2─pH11 catalyst demonstrated the best catalytic activity and 2 mmol of DEC was produced at 180 oC and 9 MPa of the final reaction pressure. In addition, ceria-supported onto high specific surface area silicas MCM-41, SBA-15 and silica gel were synthesized and tested for the first time as catalysts in the synthesis of DEC. Deposition of cerium oxide on MCM-41 and SiO2 supports resulted in a substantial increase of the alkalinity of the carrier materials. Hexagonal SBA-15 modified with 20 wt % of ceria exhibited the second highest basicity in the series of supported catalysts. Evaluation of the catalytic activity of ceria-supported catalysts showed that reaction carried out over 20 wt % CeO2-SBA-15 generated the highest amount of DEC.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.