20 resultados para Tissue implantation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone engineering is a rapidly developing area of reconstructive medicine where bone inducing factors and/or cells are combined with a scaffold material to regenerate the structure and function of the original tissue. The aim of this study was to compare the suitability of different macroporous scaffold types for bone engineering applications. The two scaffold categories studied were a) the mechanically strong and stable titanium fiber meshes and b) the elastic and biodegradable porous polymers. Furthermore, bioactive modifications were applied to these basic scaffold types, and their effect on the osteogenic responses was evaluated in cell culture and ectopic bone formation studies. The osteogenic phenotype of cultured cell-scaffold constructs was heightened with a sol-gel derived titania coating, but not with a mixed titania-silica coating. The latter coating also resulted in delayed ectopic bone formation in bone marrow stromal cell seeded scaffolds. However, the better bone contact in early implantation times and more even bone tissue distribution at later times indicated enhanced osteoconductivity of both the coated scaffold types. Overall, the most promising bone engineering results were obtained with titania coated fiber meshes. Elastic and biodegradable poly(ε-caprolactone/D,L-lactide) based scaffolds were also developed in this study. The degradation rates of the scaffolds in vitro were governed by the hydrophilicity of the polymer matrix, and the porous architecture was controlled by the amount and type of porogen used. A continuous phase macroporosity was obtained using a novel CaCl2 • 6H2O porogen. Dynamic culture conditions increased cell invasion, but decreased cell numbers and osteogenicity, within the scaffolds. Osteogenic differentiation in static cultures and ectopic bone formation in cell seeded scaffolds were enhanced in composites, with 30 wt-% of bioactive glass filler.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patologian laboratoriossa leikepreparaatin valmistuksen viimeinen vaihe on objektilasin peittäminen. Tämä voidaan suorittaa manuaalisesti tai peitinautomaatilla. Objektilasin ja peitinlasin väliin tulee peitinaine, joita on monia erilaisia. Peittämisen tulee olla mahdollisimman laadukasta huolimatta siitä, tehdäänkö se manuaalisesti tai peitinautomaatilla. Tämä tarkoittaa, että peitetyillä objektilaseilla ei saisi olla ilmakuplia ja niiden tulisi olla kirkkaita. Työni kohteena oli kartoittaa, minkälaisia käyttöongelmia Tissue-Tek GLC 550 -peitinlasiautomaatissa on esiintynyt HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla. Työhön otin mukaan myös kaksi samanlaista laitetta, jotka sijaitsevat HUSLAB/ Meilahden patologian laboratoriot/ Patologian keskuslaboratoriolla. Yleisimpiä käyttöongelmia ovat olleet laitteiden antamat vikahälytykset ja ilmakuplien jääminen objektilaseille. Näille kolmelle peitinlasiautomaatille laadin kolmen viikon ajaksi täytettävän ongelmanseurantalomakkeen, jolla kartoitettiin laitteissa esiintyneita hälytyksiä. Tämän lisäksi suoritin kokeilun HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla, jossa empiirisesti kokeilemalla muuntelin laitteessa peitinaineen tipan kokoa, peitinaineen juovan pituutta objektilasilla ja peitinlasien lämpötilaa niitä käyttöön otettaessa. Hälytystyyppejä esiintyi neljä erilaista. Yhdellä peitinlasiautomaatilla hälytyksiä esiintyi vähintään kuusi kertaa. Laitemyyjän Algol Pharma Oy:n kanssa pohdimme ratkaisuja käyttöongelmiin. Hälytyksien vähentämiseksi tärkeintä on huolehtia laitteen päivittäisestä puhdistuksesta. Laitteen parametreja säätämällä voidaan vähentää tiettyjä hälytyksiä. Laitteen käyttäjä voi säätää joitakin parametreja ja loput on säädeltävissä laitehuoltajan toimesta. Omassa kokeilussani huomasin, että säätämällä peitinainejuovan kohdan juuri sopivaksi peitinlasin mukaan saavutetaan mahdollisimman laadukasta peittämistä. Työlläni saatiin vähennettyä ilmakuplien määrää objektilaseilla HUSLAB/ Meilahden patologian laboratoriot/ Ihopatologialla. Jatkossa nähdään, vähentyvätkö hälytykset, kun kiinnitetään huomiota erityisesti peitinlasiautomaatin puhdistukseen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bioactive glasses are surface-active ceramic materials which support and accelerate bone growth in the body. During the healing of a bone fracture or a large bone defect, fixation is often needed. The aim of this thesis was to determine the dissolution behaviour and biocompatibility of a composite consisting of poly(ε-caprolactone-co-DL-lactide) and bioactive glass (S53P4). In addition the applicability as an injectable material straight to a bone defect was assessed. In in vitro tests the dissolution behaviour of plain copolymer and composites containing bioactive glass granules was evaluated, as well as surface reactivity and the material’s capability to form apatite in simulated body fluid (SBF). The human fibroblast proliferation was tested on materials in cell culture. In in vivo experiments, toxicological tests, material degradation and tissue reactions were tested both in subcutaneous space and in experimental bone defects. The composites containing bioactive glass formed a unified layer of apatite on their surface in SBF. The size and amount of glass granules affected the degradation of polymer matrix, as well the material’s surface reactivity. In cell culture on the test materials the human gingival fibroblasts proliferated and matured faster compared with control materials. In in vitro tests a connective tissue capsule was formed around the specimens, and became thinner in the course of time. Foreign body cell reactions in toxicological tests were mild. In experimental bone defects the specimens with a high concentration of small bioactive glass granules (<45 μm) formed a dense apatite surface layer that restricted the bone ingrowth to material. The range of large glass granules (90-315 μm) with high concentrations formed the best bonding with bone, but slow degradation on the copolymer restricted the bone growth only in the superficial layers. In these studies, the handling properties of the material proved to be good and tissue reactions were mild. The reactivity of bioactive glass was retained inside the copolymer matrix, thus enabling bone conductivity with composites. However, the copolymer was noticed to degradate too slowly compared with the bone healing. Therefore, the porosity of the material should be increased in order to improve tissue healing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Obesity has become the leading cause of many chronic diseases, such as type 2 diabetes and cardiovascular diseases. The prevalence of obesity is high in developed countries and it is also a major cause of the use of health services. Ectopic fat accumulation in organs may lead to metabolic disturbances, such as insulin resistance.Weight loss with very-low-energy diet is known to be safe and efficient. Weight loss improves whole body insulin sensitivity, but its effects on tissue and organ level in vivo are not well known. The aims of the studies were to investigate possible changes of weight loss in glucose and fatty acid uptake and perfusion and fat distribution at tissue and organ level using positron emission tomography and magnetic resonance imaging and spectroscopy in 34 healthy obese subjects. The results showed that whole-body insulin sensitivity increased after weight loss with very-low-energy diet and this is associated with improved skeletal muscle insulin-stimulated glucose uptake, but not with adipose tissue, liver or heart glucose uptake. Liver insulin resistance decreased after weight loss. Liver and heart free fatty acid uptakes decreased concomitantly with liver and heart triglyceride content. Adipose tissue and myocardial perfusion decreased. In conclusion, enhanced skeletal muscle glucose uptake leads to increase in whole-body insulin sensitivity when glucose uptake is preserved in other organs studied. These findings suggest that lipid accumulation found in the liver and the heart in obese subjects without co-morbidies is in part reversible by reduced free fatty acid uptake after weight loss. Reduced lipid accumulation in organs may improve metabolic disturbances, e.g. decrease liver insulin resistance. Keywords: Obesity, weight loss, very-low-energy diet, adipose tissue metabolism, liver metabolism, heart metabolism, positron emission tomography

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims:This study was carried out to evaluate the feasibility of two different methods to determine free flap perfusion in cancer patients undergoing major reconstructive surgery. The hypotheses was that low perfusion in the flap is associated with flap complications. Patients and methods: Between August 2002 and June 2008 at the Department of Otorhinolaryngology – Head and Neck Surgery, Department of Surgery, and at the PET Centre, Turku, 30 consecutive patients with 32 free flaps were included in this study. The perfusion of the free microvascular flaps was assessed with positron emission tomography (PET) and radioactive water ([15O] H2O) in 40 radiowater injections in 33 PET studies. Furthermore, 24 free flaps were monitored with a continuous tissue oxygen measurement using flexible polarographic catheters for an average of three postoperative days. Results: Of the 17 patients operated on for head and neck (HN) cancer and reconstructed with 18 free flaps, three re-operations were carried out due to poor tissue oxygenation as indicated by ptiO2 monitoring results and three other patients were reoperated on for postoperative hematomas in the operated area. Blood perfusion assessed with PET (BFPET) was above 2.0 mL / min / 100 g in all flaps and a low flap-to-muscle BFPET ratio appeared to correlate with poor survival of the flap. Survival in this group of HN cancer patients was 9.0 months (median, range 2.4-34.2) after a median follow-up of 11.9 months (range 1.0-61.0 months). Seven HN patients of this group are alive without any sign of recurrence and one patient has died of other causes. All of the 13 breast reconstruction patients included in the study are alive and free of disease at a median follow-up time of 27.4 months (range 13.9-35.7 months). Re-explorations were carried out in three patients due data provided by ptiO2 monitoring and one re-exploration was avoided on the basis of adequate blood perfusion assessed with PET. Two patients had donorsite morbidity and 3 patients had partial flap necrosis or fat necrosis. There were no total flap losses. Conclusions: PtiO2 monitoring is a feasible method of free flap monitoring when flap temperature is monitored and maintained close to the core temperature. When other monitoring methods give controversial results or are unavailable, [15O] H2O PET technique is feasible in the evaluation of the perfusion of the newly reconstructed free flaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Pacemaker implantation (PMI) may predispose to venous thromboembolism (VTE) and obstruction (VO). This prospective study aimed at quantifying changes in venous calibers, and at determining the incidence of symptomatic and asymptomatic VTE/VO after PMI. Further goals included an assessment of the role of transesophageal echocardiography (TEE) in the diagnosis of lead-related central venous thrombi (CVT), and determination of predictors for VTE/VO. Methods: 150 (mean age 67; 61% male) consecutive patients with first PMI were enrolled and followed for 6 months. Contrast venography was performed at baseline and 6 months after PMI to measure venous diameters, and to detect stenosis, total occlusions and thrombi. TEE was conducted in 66 patients. Based on clinical suspicion, work-up for pulmonary embolism (PE) or acute deep vein thrombosis (DVT) were performed as needed. A total of 50 cases underwent longer-term (mean 2.4 years) follow-up venography. All cases with VTE/VO during the initial 6 months, and their matched controls, were selected for a case-control study focused on possible predictive role of laboratory and patient-related factors for the development of VTE/VO. Results: 10 (7 %) patients were found to have baseline venous abnormalities (e.g. 8 obstructions). Mean venous diameters diminished significantly during the first 6 months, but no further reduction occurred in late follow-up. New VO was discovered in 19 patients (14 %; 14 stenosis, 5 total occlusions; all asymptomatic). Small non-obstructive thrombi were found in 20/140 (14 %) 6-month venograms. TEE at 6 months disclosed CVT in 6 (9 %) patients. One (0.7 %) patient had acute symptomatic upper-extremity DVT, and PE was discovered in 5/150 (3.3 %) patients during the first 6 months with no further cases thereafter. At 6 months, the total number of cases with VTE/VO amounted to 47 (31.3 %). Additionally, the later 2-year venograms (n=50) disclosed 4 (8 %) total occlusions and 1 (2 %) stenosis. In the case-control study, no parameter was predictive of venous end-points as a single variable, but there appeared to be significant clustering of traditional VTE risk-factors among the cases. Laboratory parameters showed a definite acute hypercoagulative state induced by PMI, but its degree did not predict subsequent development of VTE/VO. Conclusions: This study shows that VTE/VO is relatively common after PMI with an overall incidence of at least 30 %. Although the majority of the lesions are asymptomatic and clinically benign, cases of PE were also encountered, and totally occluded veins may hamper future upgrading or replacement of pacing system. Venous complications seem difficult to prognosticate as firm predictors were not identified from a wide range of parameters analyzed in this study, although clustering of classic VTE risk factors may be a predisposing factor. Parameters related to implantation procedure or pacing systems and the severity of implantation-induced trauma did not emerge as predictors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haavan jyväiskudoksen muodostuminen – Hydroksiapatiittipinnoi-tetun selluloosasienen vaikutus solujen erilaistumiseen paranemisprosessin aikana Etsittäessä uusia luun bioyhteensopivia täytemateriaaleja selluloosasieni päällystettiin luun koostumusta muistuttavalla runsaasti piitä sisältävällä hydroksiapatiittikerroksella. Vastoin odotuksia hydroksiapatiittipinnoitettu selluloosa ei parantanut luun kasvua, vaan päinvastoin ylläpiti tulehdusta ja sidekudossolujen hakeutumista vamma-alueelle. Ihon alle implantoituna sama sienimateriaali edisti merkittävästi haavan verekkään jyväiskudoksen kasvua. Tämän löydöksen perusteella hydroksiapatiittipinnoitetun selluloosasienen vaikutusta haavan soluihin paranemisprosessin aikana tutkittiin tarkemmin ja havaittiin, että tulehdussolujen lisäksi sieniin kertyi tavallista enemmän sekä hematopoieettisia että mesenkymaalisia kantasoluja. Hematopoieettiset kantasolut sijaitsevat luuytimessä lähellä luun sisäpintaa. Luun hydroksiapatiitista vapautuu kalsiumioneja luun jatkuvan fysiologisen uudismuodostuksen ja hajottamisen yhteydessä. Kantasolut etsiytyvät luuytimeen kalsiumia aistivien reseptorien välityksellä. Koska luun pintakerrosta muistuttavasta hydroksiapatiittipinnoitteesta vapautuu kalsiumia, tämän ajateltiin toimivan selityksenä sille, että hematopoieettiset kantasolut hakeutuvat runsaslukuisesti juuri hydroksiapatiittipinnoitettuihin selluloosasieniin. Tämän hypoteesin mukaisesti hydroksiapatiittipinnoitettujen selluloosapalkkien läheisyydestä löydettiin suuria määriä kalsiumreseptoreja sisältäviä soluja. Jatkotutkimuksissa todettiin lisäksi, että hematopoieettiset kantasolut pystyivät sienissä erilaistumaan hemoglobiinia tuottaviksi soluiksi. Havaittujen punasolulinjan merkkiaineiden perusteella näyttäisikin siltä, että haavan paranemiskudoksessa tapahtuu paranemisen aikana ekstramedullaarista erytropoieesia. Nämä soluja ohjaavat vaikutukset saattavat olla hyödyllisiä vaikeasti paranevien haavojen hoidossa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Currently, numerous high-throughput technologies are available for the study of human carcinomas. In literature, many variations of these techniques have been described. The common denominator for these methodologies is the high amount of data obtained in a single experiment, in a short time period, and at a fairly low cost. However, these methods have also been described with several problems and limitations. The purpose of this study was to test the applicability of two selected high-throughput methods, cDNA and tissue microarrays (TMA), in cancer research. Two common human malignancies, breast and colorectal cancer, were used as examples. This thesis aims to present some practical considerations that need to be addressed when applying these techniques. cDNA microarrays were applied to screen aberrant gene expression in breast and colon cancers. Immunohistochemistry was used to validate the results and to evaluate the association of selected novel tumour markers with the outcome of the patients. The type of histological material used in immunohistochemistry was evaluated especially considering the applicability of whole tissue sections and different types of TMAs. Special attention was put on the methodological details in the cDNA microarray and TMA experiments. In conclusion, many potential tumour markers were identified in the cDNA microarray analyses. Immunohistochemistry could be applied to validate the observed gene expression changes of selected markers and to associate their expression change with patient outcome. In the current experiments, both TMAs and whole tissue sections could be used for this purpose. This study showed for the first time that securin and p120 catenin protein expression predict breast cancer outcome and the immunopositivity of carbonic anhydrase IX associates with the outcome of rectal cancer. The predictive value of these proteins was statistically evident also in multivariate analyses with up to a 13.1- fold risk for cancer specific death in a specific subgroup of patients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica based biomaterials, such as melt-derived bioactive glasses and sol-gel glasses, have been used for a long time in bone healing applications because of their ability to form hydroxyapatite and to stimulate stem cell proliferation and differentiation. In this study, bone marrow derived cells were cultured with bioactive glass and sol-gel silica, and seeded into porous polymer composite scaffolds that were then implanted femorally and subcutaneously in rats to monitor their migration inside host tissue. Bone marrow derived cells were also injected intraperitoneally. Transplanted cells migrated to various tissues inside the host, including the lung, liver spleen, thymus and bone marrow. The method of transplantation affected the time frame of cell migration, with intraperitoneal injection being the fastest and femoral implantation the slowest, but not the target tissues of migration. Transplanted donor cells had a limited lifetime in the host and were later eliminated from all tested tissues. Bioactive glass, however, affected the implanted cells negatively. When it was present in the scaffold no donor cells were found in any of the tested host tissues. Bioactive glass S53P4 was found to support both osteoblastic and osteoclastic phenotype of bone marrow derived cells, but it was resistant to the resorbing effect of osteoclastic bone marrow derived cells, showing that bioactive glass is rather dissolved through physicochemical reactions than resorbed by cells. Fast-dissolving silica sol gel in microparticulate form was found to increase collagen formation by bone marrow derived cells, while slow dissolving silica microparticles enhanced their proliferation, suggesting that the dissolution rate of silica controls the response of bone marrow derived cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of menopausal hormone therapy (MHT) on increasing the risk for breast cancer (BC) remains controversial. To understand MHT-elicited cellular breast effects and the potential risks, included with using this therapy, a further investigation into this controversy is the subject of this thesis. In this thesis, to study the effects of estrogen, progestin, androgens and selective estrogen receptor modulators (SERMs), a modified tissue explant culture system was used. The different types of human breast tissues (HBTs) used in this study were normal HBTs, obtained from reduction mammoplasties of premenopausal women (prem-HBTs) or postmenopausal (postm-HBTs) women and peritumoral HBTs (peritum-HBTs) which were obtained from surgeries on postmenopausal BC patients. The explants were cultured up to three weeks in the presence or absence of estradiol (E2), medroxyprogesterone acetate (MPA), testosterone (T), dihydrotestosterone (DHT) and SERMs - ospemifene (OSP), raloxifene (RAL) and tamoxifen (TAM). The cultured HBTs maintained morphological integrity and responded to hormonal treatment in vitro. E2, MPA or E2/MPA increased proliferative activity and was associated with increased cyclin-D1 and caused changes in the cell cycle inhibitors p21 and p27, whereas the androgens T and DHT inhibited proliferation and increased apoptosis in HBT epithelia and opposed E2-stimulated proliferation and cell survival. The postm-HBTs were more sensitive to E2 than prem-HBTs. The effects of OSP, RAL and TAM on HBT epithelium were antiproliferative. E2, androgens and SERMs were associated with marked changes in the proportions of epithelial cells expressing steroid hormone receptors: E2 increased ERα expressing cells and decreased androgen receptor (AR) positive cells, whereas T and DHT had opposite effects. The OSP, RAL and TAM, also decreased a proportion of ERα positive cells in HBT epithelium. At 100 nM, these compounds maintained the relative number of AR positive cells, present at control level, which may partly explain proliferative inhibition. In conclusion, the proliferative activity of E2, in the epithelium of postm-HBTs, is opposed by T and DHT, which suggests that the inclusion of androgens in MHT may decrease the risk for developing BC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The white adipose tissue mainly serves the purpose of energy storage, while brown adipose tissue (BAT) has the capacity to generate heat under cold conditions in mammals and in human infants. BAT is controlled by the central nervous system, and BAT function is accompanied by increased energy expenditure. However, it was not previously certain whether adult humans also have functional BAT. The aim of this doctoral work was to identify functional BAT in adult humans and to characterise its glucose uptake and blood flow under cold and insulin stimulation conditions in lean and in obese humans, by using positron emission tomography. Further, the impact of weight loss on BAT glucose uptake was assessed. Cerebral glucose uptake was also studied in relation to BAT function and cold exposure. The results showed that healthy adult humans have functional BAT, as assessed by the intense cold-induced glucose uptake and by biopsies. BAT was also found to be a highly insulinsensitive tissue in lean humans, but the effects of insulin and cold exposure were attenuated in obese humans, although the glucose uptake capacity of cold-activated BAT might be increased by weight loss. Blood flow in the BAT of lean humans was associated with whole-body energy expenditure. The presence of cold-activated BAT was related to lower body mass index and higher insulin sensitivity. Finally, BAT activation was linked to the activity of the cerebellum, the thalamus and certain neocortical regions. The cold-induced cerebral glucose uptake was also lower in obese than in lean adult humans.