16 resultados para Tight-binding hamiltonian

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Streptavidin, a tetrameric protein secreted by Streptomyces avidinii, binds tightly to a small growth factor biotin. One of the numerous applications of this high-affinity system comprises the streptavidin-coated surfaces of bioanalytical assays which serve as universal binders for straightforward immobilization of any biotinylated molecule. Proteins can be immobilized with a lower risk of denaturation using streptavidin-biotin technology in contrast to direct passive adsorption. The purpose of this study was to characterize the properties and effects of streptavidin-coated binding surfaces on the performance of solid-phase immunoassays and to investigate the contributions of surface modifications. Various characterization tools and methods established in the study enabled the convenient monitoring and binding capacity determination of streptavidin-coated surfaces. The schematic modeling of the monolayer surface and the quantification of adsorbed streptavidin disclosed the possibilities and the limits of passive adsorption. The defined yield of 250 ng/cm2 represented approximately 65 % coverage compared with a modelled complete monolayer, which is consistent with theoretical surface models. Modifications such as polymerization and chemical activation of streptavidin resulted in a close to 10-fold increase in the biotin-binding densities of the surface compared with the regular streptavidin coating. In addition, the stability of the surface against leaching was improved by chemical modification. The increased binding densities and capacities enabled wider high-end dynamic ranges in the solid-phase immunoassays, especially when using the fragments of the capture antibodies instead of intact antibodies for the binding of the antigen. The binding capacity of the streptavidin surface was not, by definition, predictive of the low-end performance of the immunoassays nor the assay sensitivity. Other features such as non-specific binding, variation and leaching turned out to be more relevant. The immunoassays that use a direct surface readout measurement of time-resolved fluorescence from a washed surface are dependent on the density of the labeled antibodies in a defined area on the surface. The binding surface was condensed into a spot by coating streptavidin in liquid droplets into special microtiter wells holding a small circular indentation at the bottom. The condensed binding area enabled a denser packing of the labeled antibodies on the surface. This resulted in a 5 - 6-fold increase in the signal-to-background ratios and an equivalent improvement in the detection limits of the solid-phase immunoassays. This work proved that the properties of the streptavidin-coated surfaces can be modified and that the defined properties of the streptavidin-based immunocapture surfaces contribute to the performance of heterogeneous immunoassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several bioaffinity assays are based on the detection of an analyte which is bound on a solid substrate via biochemical interaction. These so called solid phase assays are based on the adhesion of the primary binding partner on a solid surface, which then binds the analyte to be detected. In this thesis work a novel solid phase based assay technology, known as spot technology, was developed. The spot technology is based on combination of high-capacity solid phases, concentrated in a spot format, utilising modified streptavidin molecules and recombinant antibody fragments. The reduction of the solid phase binding surface to a size of a spot enabled denser binding of the target molecules, providing improved signal intensities and signal-to-background ratio when applied in different solid phase immunoassays. Streptavidin-biotin interactions are commonly utilised in numerous different bioaffinity assays and the ultimate nature of streptavidin to bind biotin is among the strongest non-covalent interaction reported between two biomolecules. In this study native core streptavidin was chemically modified to provide polymerised streptavidin molecules with altered adsorption properties. These streptavidin conjugates, when coated onto polystyrene surface, provided enhanced biotin binding capacity and surface stability when compared to a reference coating constructed with native streptavidin. Furthermore, the combination of chemically modified streptavidin, sitespecifically biotinylated antibody fragments and the spot coating technology provided highly dense solid phase coating with improved binding properties. The performance of the spot assay technology was further demonstrated in different immunoassay configurations. Human thyroid stimulating hormone (TSH) and human cardiac troponin I (cTnI) were used as model analytes to show the applicability of the highly sensitive spot-based solid-phase immunoassay for detection of very low levels of analytes. It was demonstrated that the spot technology provided an assay concept with enhanced sensitivity and short turn-around times, characteristics that are highly suitable for point-of-care applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibodies are natural binding proteins produced in vertebrates as a response to invading pathogens and foreign substances. Because of their capability for tight and specific binding, antibodies have found use as binding reagents in research and diagnostics. Properties of cloned recombinant antibodies can be further improved by means of in vitro evolution, combining mutagenesis with subsequent phage display selection. It is also possible to isolate entirely new antibodies from vast naïve or synthetic antibody libraries by phage display. In this study, library techniques and phage display selection were applied in order to optimise binding scaffolds and antigen recognition of antibodies, and to evolve new and improved bioaffinity reagents. Antibody libraries were generated by random and targeted mutagenesis. Expression and stability were mainly optimised by the random methods whereas targeted randomisation of the binding site residues was used for optimising the binding properties. Trinucleotide mutagenesis allowed design of defined randomisation patterns for a synthetic antibody library. Improved clones were selected by phage display. Capture by a specific anti- DHPS antibody was exploited in the selection of improved phage display of DHPS. Efficient selection for stability was established by combining phage display selection with denaturation under reducing conditions. Broad-specific binding of a generic anti-sulfonamide antibody was improved by selection with one of the weakest binding sulfonamides. In addition, p9 based phage display was studied in affinity selection from the synthetic library. A TIM barrel protein DHPS was engineered for efficient phage display by combining cysteinereplacement with random mutagenesis. The resulting clone allows use of phage display in further engineering of DHPS and possibly use as an alternative-binding scaffold. An anti-TSH scFv fragment, cloned from a monoclonal antibody, was engineered for improved stability to better suite an immunoassay. The improved scFv tolerates 8 – 9 °C higher temperature than the parental scFv and should have sufficient stability to be used in an immunoanalyser with incubation at 36 °C. The anti-TSH scFv fragment was compared with the corresponding Fab fragment and the parental monoclonal antibody as a capturing reagent in a rapid 5-min immunoassay for TSH. The scFv fragment provided some benefits over the conventionally used Mab in anayte-binding capacity and assay kinetics. However, the recombinant Fab fragment, which had similar kinetics to the scFv, provided a more sensitive and reliable assay than the scFv. Another cloned scFv fragment was engineered in order to improve broad-specific recognition of sulfonamides. The improved antibody detects different sulfonamides at concentrations below the maximum residue limit (100 μg/kg in EU and USA) and allows simultaneous screening of different sulfonamide drug residues. Finally, a synthetic antibody library was constructed and new antibodies were generated and affinity matured entirely in vitro. These results illuminate the possibilities of phage display and antibody engineering for generation and optimisation of binding reagents in vitro and indicate the potential of recombinant antibodies as affinity reagents in immunoassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrins are heterodimeric cell adhesion receptors involved in cell-cell and cell-extracellular matrix (ECM) interactions. They transmit bidirectional signals across the cell membrane. This results in a wide range of biological events from cell differentiation to apoptosis. alpha2beta1 integrin is an abundant collagen receptor expressed on the surface of several cell types. In addition to ECM ligands, alpha2beta1 integrins are bound by echovirus 1 (EV1) which uses alpha2beta1 as a receptor to initiate its life cycle in the infected cell. The aim of this thesis project was to provide further insight into the mechanisms of alpha2beta1 integrin ligand recognition and receptor activation. Collagen fibrils are the principal tensile elements of the ECM. Yet, the interaction of alpha2beta1 integrin with the fibrillar form of collagen I has received relatively little attention. This research focused on the ability of alpha2beta1 integrin to act as a receptor for type I collagen fibrils. Also the molecular requirements of the EV1 interaction with alpha2beta1 were studied. Conventionally, ligand binding has been suggested to require integrin activation and the binding may further trigger integrin signalling. Another main objective of this study was to elucidate both the inside-out and outside-in signalling mechanisms of alpha2beta1 integrin in adherent cells. The results indicated that alpha2beta1 integrin is the principal integrin-type collagen receptor for type I collagen fibrils, and alpha2beta1 may participate in the regulation of pericellular collagen fibrillogenesis. Furthermore, alpha2beta1 integrin inside-out activation appeared to be synergistically regulated by integrin clustering and conformational activation. The triggering of alpha2beta1 integrin outside-in signalling, however, was shown to require both conformational changes and clustering. In contrast to ECM ligands, EV1 appeared to take advantage of the bent, inactive form of alpha2beta1 integrin in initiating its life cycle in the cell. This research together with other recent studies, has shed light on the molecular mechanisms of integrin activation. It is becoming evident that large ligands are able to bind to the bent form of integrin, which has been previously considered to be physiologically inactive. Consequently, our understanding of the conformational modulation of integrins upon activation is changing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Integrin transmembrane receptor functions are regulated by adaptor molecules binding to their alpha and beta subunit intracellular domains, or tails, thus affecting integrin traffic and adhesion during e.g. cell motility. Interestingly, many cellular proteins function in both cell motility and cell division, thus raising the possibility that integrins might be involved in regulating the cell cycle. A thorough understanding of cell division is essential in cell biology and in human malignancies. It is well established that failures to complete cell cycle can give rise to genetically unstable cells with tumorigenic properties. Transformed cells promote the disruption of intercellular adhesions such as tight junctions, and this correlates with the onset of cell motility, invasion and unfavorable prognosis in cancer. In this study, we analyzed integrin regulation, mediated by adaptor binding to the  subunit tail, during cell motility and cell division. We revealed a novel molecular mechanism by which Rab21, through association with the integrin alpha subunits, drives integrin endosomal traffic during mitotic phases. In addition, we found indications for this finding in vivo, as RAB21 gene deletions were mapped in ovarian and prostate cancer samples. Importantly, the multinucleated phenotype of cultured ovarian cancer cells could be reverted by Rab21 overexpression. In this thesis work, we also show how the tight junction protein ZO-1 unexpectedly interacts with the 5 integrin cytoplasmic domain in the lamellipodia to promote cell motility and at the cleavage furrow to support separation of the daughter cells. The alpha5-ZO-1 complex formation was dependent on PKC which regulates ZO-1 phosphorylation and its subcellular localization. In addition, by an in situ detection method, we showed that a subset of metastatic human lung cancers expressed the alpha5beta-ZO-1 complex. Taken together, we were able to identify new molecular pathways that regulate integrin functions in an alpha tail-mediated fashion. These findings firmly suggest that genetic alterations in integrin traffic may lead to progression of tumorigenesis as a result of failed cell division. Also, the interplay of integrins and ZO-1 in forming spatially regulated adhesive structures broadens our view of crosstalk between pathways and distinct adhesive structures that can be involved in cancer cell biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpha2-Adrenoceptors: structure and ligand binding properties at the molecular level The mouse is the most frequently used animal model in biomedical research, but the use of zebrafish as a model organism to mimic human diseases is on the increase. Therefore it is considered important to understand their pharmacological differences from humans also at the molecular level. The zebrafish Alpha2-adrenoceptors were expressed in mammalian cells and the binding affinities of 20 diverse ligands were determined and compared to the corresponding human receptors. The pharmacological properties of the human and zebrafish Alpha2--adrenoceptors were found to be quite well conserved. Receptor models based on the crystal structures of bovine rhodopsin and the human Beta2-adrenoceptor revealed that most structural differences between the paralogous and orthologous Alpha2--adrenoceptors were located within the second extracellular loop (XL2). Reciprocal mutations were generated in the mouse and human Alpha2--adrenoceptors. Ligand binding experiments revealed that substitutions in XL2 reversed the binding profiles of the human and mouse Alpha2--adrenoceptors for yohimbine, rauwolscine and RS-79948-197, evidence for a role for XL2 in the determination of species-specific ligand binding. Previous mutagenesis studies had not been able to explain the subtype preference of several large Alpha2--adrenoceptor antagonists. We prepared chimaeric Alpha2--adrenoceptors where the first transmembrane (TM1) domain was exchanged between the three human Alpha2--adrenoceptor subtypes. The binding affinities of spiperone, spiroxatrine and chlorpromazine were observed to be significantly improved by TM1 substitutions of the Alpha2a--adrenoceptor. Docking simulations indicated that indirect effects, such as allosteric modulation, are more likely to be involved in this phenomenon rather than specific side-chain interactions between ligands and receptors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress is a constant threat to almost all organisms. It damages a number of biomolecules and leads to the disruption of many crucial cellular functions. It is caused by reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), superoxide (•O2 -), and hydroxyl radical (•OH). The most harmful of these compounds is •OH, which is only formed in cells in the presence of redox-cycling transition metals, such as iron and copper. Bacteria have developed a number of mechanisms to cope with ROS. One of the most widespread means employed by bacteria is the DNA-binding proteins from starved cells (Dps). Dps proteins protect the cells by binding and oxidizing Fe2+, thus greatly reducing the production of •OH. The oxidized iron is stored inside the protein as an iron core. In addition, Dps proteins bind directly to DNA forming a protective coating that shields DNA from harmful agents. Moreover, Dps proteins have been found to elicit other protective functions in cells and to participate in bacterial virulence. Dps proteins are of special importance to Streptococci owing to the lack of catalase in this genus of bacteria.This study was focused on structural and functional characterization of streptococcal Dpslike peroxide resistance (Dpr) proteins. Initially, crystal structures of Streptococcus pyogenes Dpr were determined. The data confirmed the presence of a di-metal ferroxidase center (FOC) in Dpr proteins and revealed the presence of a novel N-terminal helix as well as a surface metal-binding site. The crystal structures of Streptococcus suis Dpr complexed with transition metals demonstrated the metal specificity of the FOC. Solution binding studies also indicated the presence of a di-metal FOC. These results suggested a possible role for Dpr in the detoxification of various metals. Iron was found to mineralize inside the protein as ferrihydrite based on X-ray absorption spectroscopy data. The iron core was found to exhibit clear superparamagnetic behaviour using magnetic and Mössbauer measurements. The results from this study are expected to further increase our understanding on the binding, oxidation, and mineralization of iron and other metals in Dpr proteins. In particular, the structural and magnetic properties of the iron core can form a basis for potential new applications in nanotechnology. From the streptococcal viewpoint, the results would help in understanding better the complicated picture of bacterial pathogenesis. Dpr proteins may also provide a novel target for drug design due to their tight involvement in bacterial virulence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The epidermis is the upper layer of the skin and keratinocytes are its most abundant cells. Tight junctions are cell junctions located in the granular layer of the epidermis. They maintain the polarity of the cells and regulate the movement of water-soluble molecules. Epidermal tight junctions may lose their integrity when there are defects in intercellular calcium regulation. Hailey-Hailey and Darier´s disease are dominantly inherited, blistering skin diseases. Hailey-Hailey disease is caused by mutations in the ATP2C1 gene encoding a calcium/manganese ATPase SPCA1 of the Golgi apparatus. Darier´s disease is caused by mutations in the ATP2A2 gene encoding a calcium ATPase SERCA2 of the endoplasmic reticulum. p38 regulates the differentiation of keratinocytes. The overall regulation of epidermal tight junctions is not well understood. The present study examined the regulation of tight junctions in the human epidermis with a focus on calcium ATPases and p38. Skin from Hailey-Hailey and Darier´s disease patients was studied by using immunofluorescence labeling which targeted intercellular junction proteins. Transepidermal water loss was also measured. ATP2C1 gene expression was silenced in cultured keratinocytes, by siRNA, which modeled Hailey-Hailey disease. Expression of intercellular junction proteins was studied at the mRNA and protein levels. Squamous cell carcinoma and normal human keratinocytes were used as a model for impaired and normal keratinocyte differentiation, and the role of p38 isoforms alpha and delta in the regulation of intercellular junction proteins was studied. Both p38 isoforms were silenced by adenovirus cell transduction, chemical inhibitors or siRNA and keratinocyte differentiation was assessed. The results of this thesis revealed that: i.) intercellular junction proteins are expressed normally in acantholytic skin areas of patients with Hailey-Hailey or Darier´s disease but the localization of ZO-1 expanded to the stratum spinosum; ii.) tight junction proteins, claudin-1 and -4, are regulated by ATP2C1 in non-differentiating keratinocytes; and iii.) p38 delta regulates the expression of tight junction protein ZO-1 in proliferating keratinocytes and in squamous cell carcinoma derived cells. ZO-1 silencing, however, did not affect the expression of other tight junction proteins, suggesting that they are differently regulated. This thesis introduces new mechanisms involved in the regulation of tight junctions revealing new interactions. It provides novel evidence linking intracellular calcium regulation and tight junctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adrenoceptors (ARs), G-protein coupled receptors (GPCRs) at the plasma membrane, respond to endogenous catecholamines noradrenaline and adrenaline. These receptors mediate several important physiological functions being especially important in the cardiovascular system and in the regulation of smooth muscle contraction. Impairments in the function of these receptors can thus lead to severe diseases and disorders such as to cardiovascular diseases and benign prostatic hyperplasia. The Eastern green mamba (Dendroaspis angusticeps) venom has been shown to contain toxins that can antagonize the functions of GPCRs. The most well-known are muscarinic toxins (MTs) targeting muscarinic acetylcholine receptors (mAChRs) with high affinity and selectivity. However, some reports have indicated that these toxins might also act on the α1- and α2-ARs which can be divided into various subtypes; the α1-ARs to α1A-, α1B- and α1D-ARs and α2-ARs to α2A-, α2B- and α2C-ARs. In this thesis, the interaction of four common MTs (MT1, MT3, MT7 and MTα) with the adrenoceptors was characterized. It was also evaluated whether these toxins could be anchored to the plasma membrane via glycosylphosphatidylinositol (GPI) tail. Results of this thesis reveal that muscarinic toxins are targeting several α-adrenoceptor subtypes in addition to their previously identified target receptors, mAChRs. MTα was found to interact with high affinity and selectivity with the α2B-AR whereas MT7 confirmed its selectivity for the M1 mAChR. Unlike MTα and MT7, MT1 and MT3 have a broad range of target receptors among the α-ARs. All the MTs characterized were found to behave as non-competitive antagonists of receptor action. The interaction between MTα and the α2B-AR was studied more closely and it was observed that the second extracellular loop of the receptor functions as a structural entity enabling toxin binding. The binding of MTα to the α2B-AR appears to be rather complex and probably involves dimerized receptor. Anchoring MTs to the plasma membrane did not interfere with their pharmacological profile; all the GPI-anchored toxins created retained their ability to block their target receptors. This thesis shows that muscarinic toxins are able to target several subtypes of α-ARs and mAChRs. These toxins offer thus a possibility to create new subtype specific ligands for the α-AR subtypes. Membrane anchored MTs on the other hand could be used to block α-AR and mAChR actions in disease conditions such as in hypertension and in gastrointestinal and urinary bladder disorders in a cell-specific manner and to study the physiological functions of ARs and mAChRs in vivo in model organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small non-coding RNAs have numerous biological functions in cell and are divided into different classes such as: microRNA, snoRNA, snRNA and siRNA. MicroRNA (miRNA) is the most studied non-coding RNA to date and is found in plants, animals and some viruses. miRNA with short sequences is involved in suppressing translation of target genes by binding to their mRNA post-transcriptionally and silencing it. Their function besides silencing of the viral gene, can be oncogenic and therefore the cause of cancer. Hence, their roles are highlighted in human diseases, which increases the interest in using them as biomarkers and drug targets. One of the major problems to overcome is recognition of miRNA. Owing to a stable hairpin structure, chain invasion by conventional Watson-Crick base-pairing is difficult. One way to enhance the hybridization is exploitation of metal-ion mediated base-pairing, i. e. oligonucleotide probes that tightly bind a metal ions and are able to form a coordinative bonds between modified and natural nucleobases. This kind of metallo basepairs containing short modified oligonucleotides can also be useful for recognition of other RNA sequences containing hairpin-like structural motives, such as the TAR sequence of HIV. In addition, metal-ion-binding oligonucleotides will undoubtedly find applications in DNA-based nanotechnology. In this study, the 3,5-dimethylpyrazol-1-yl substituted purine derivatives were successfully incorporated within oligonucleotides, into either a terminal or non-terminal position. Among all of the modified oligonucleotides studied, a 2-(3,5-dimethylpyrazol-1-yl)-6-oxopurine base containing oligonucleotide was observed to bind most efficiently to their unmodified complementary sequences in the presence of both Cu2+ or Zn2+. The oligonucleotide incorporating 2,6-bis(3,5-dimethylpyrazol-1-yl)purine base also markedly increased the stability of duplexes in the presence of Cu2+ without losing the selectivity.