24 resultados para Task-Based Instruction (TBI)

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esitys KDK-käytettävyystyöryhmän järjestämässä seminaarissa: Miten käyttäjien toiveet haastavat metatietokäytäntöjämme? / How users' expectations challenge our metadata practices? 30.9.2014.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ongoing global financial crisis has demonstrated the importance of a systemwide, or macroprudential, approach to safeguarding financial stability. An essential part of macroprudential oversight concerns the tasks of early identification and assessment of risks and vulnerabilities that eventually may lead to a systemic financial crisis. Thriving tools are crucial as they allow early policy actions to decrease or prevent further build-up of risks or to otherwise enhance the shock absorption capacity of the financial system. In the literature, three types of systemic risk can be identified: i ) build-up of widespread imbalances, ii ) exogenous aggregate shocks, and iii ) contagion. Accordingly, the systemic risks are matched by three categories of analytical methods for decision support: i ) early-warning, ii ) macro stress-testing, and iii ) contagion models. Stimulated by the prolonged global financial crisis, today's toolbox of analytical methods includes a wide range of innovative solutions to the two tasks of risk identification and risk assessment. Yet, the literature lacks a focus on the task of risk communication. This thesis discusses macroprudential oversight from the viewpoint of all three tasks: Within analytical tools for risk identification and risk assessment, the focus concerns a tight integration of means for risk communication. Data and dimension reduction methods, and their combinations, hold promise for representing multivariate data structures in easily understandable formats. The overall task of this thesis is to represent high-dimensional data concerning financial entities on lowdimensional displays. The low-dimensional representations have two subtasks: i ) to function as a display for individual data concerning entities and their time series, and ii ) to use the display as a basis to which additional information can be linked. The final nuance of the task is, however, set by the needs of the domain, data and methods. The following ve questions comprise subsequent steps addressed in the process of this thesis: 1. What are the needs for macroprudential oversight? 2. What form do macroprudential data take? 3. Which data and dimension reduction methods hold most promise for the task? 4. How should the methods be extended and enhanced for the task? 5. How should the methods and their extensions be applied to the task? Based upon the Self-Organizing Map (SOM), this thesis not only creates the Self-Organizing Financial Stability Map (SOFSM), but also lays out a general framework for mapping the state of financial stability. This thesis also introduces three extensions to the standard SOM for enhancing the visualization and extraction of information: i ) fuzzifications, ii ) transition probabilities, and iii ) network analysis. Thus, the SOFSM functions as a display for risk identification, on top of which risk assessments can be illustrated. In addition, this thesis puts forward the Self-Organizing Time Map (SOTM) to provide means for visual dynamic clustering, which in the context of macroprudential oversight concerns the identification of cross-sectional changes in risks and vulnerabilities over time. Rather than automated analysis, the aim of visual means for identifying and assessing risks is to support disciplined and structured judgmental analysis based upon policymakers' experience and domain intelligence, as well as external risk communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä työpaperissa Venäjän sotilasreformin tarkastelu painottuu maavoimiin. Muista puolustushaaroista käsitellään lyhyesti meri- ja ilmavoimia. Lisäksi käsitellään koulutus, reservi ja mobilisaatio, johtaminen, toiminnan ulkoistaminen ja sosiaaliset kysymykset sekä asevoimien varustaminen. Julkaisun lähdemateriaali on lähes kokonaan venäjänkielistä. Sen avulla esitetään venäläisten omat niin myönteiset kuin kriittiset näkemykset koskien Venäjän asevoimien sotilasreformia, uutta ilmettä. Venäjänkielisistä termeistä käytetään mahdollisimman vastaavaa tai kuvaavaa suomenkielistä ilmaisua.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents synopsis of efficient strategies used in power managements for achieving the most economical power and energy consumption in multicore systems, FPGA and NoC Platforms. In this work, a practical approach was taken, in an effort to validate the significance of the proposed Adaptive Power Management Algorithm (APMA), proposed for system developed, for this thesis project. This system comprise arithmetic and logic unit, up and down counters, adder, state machine and multiplexer. The essence of carrying this project firstly, is to develop a system that will be used for this power management project. Secondly, to perform area and power synopsis of the system on these various scalable technology platforms, UMC 90nm nanotechnology 1.2v, UMC 90nm nanotechnology 1.32v and UMC 0.18 μmNanotechnology 1.80v, in order to examine the difference in area and power consumption of the system on the platforms. Thirdly, to explore various strategies that can be used to reducing system’s power consumption and to propose an adaptive power management algorithm that can be used to reduce the power consumption of the system. The strategies introduced in this work comprise Dynamic Voltage Frequency Scaling (DVFS) and task parallelism. After the system development, it was run on FPGA board, basically NoC Platforms and on these various technology platforms UMC 90nm nanotechnology1.2v, UMC 90nm nanotechnology 1.32v and UMC180 nm nanotechnology 1.80v, the system synthesis was successfully accomplished, the simulated result analysis shows that the system meets all functional requirements, the power consumption and the area utilization were recorded and analyzed in chapter 7 of this work. This work extensively reviewed various strategies for managing power consumption which were quantitative research works by many researchers and companies, it's a mixture of study analysis and experimented lab works, it condensed and presents the whole basic concepts of power management strategy from quality technical papers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis attempts to find whether scenario planning supports the organizational strategy as a method for addressing uncertainty. The main issues are why, what and how scenario planning fits in organizational strategy and how the process could be supported to make it more effective. The study follows the constructive approach. It starts with examination of competitive advantage and the way that an organization develops strategy and how it addresses the uncertainty in its operational environment. Based on the conducted literature review, scenario methods would seem to provide versatile platform for addressing future uncertainties. The construction is formed by examining the scenario methods and presenting suitable support methods, which results in forming of the theoretical proposition for supporter scenario process. The theoretical framework is tested in laboratory conditions, and the results from the test sessions are used a basis for scenario stories. The process of forming the scenarios and the results are illustrated and presented for scrutiny

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tele- ja dataviestinnän yhdistyminen digitaaliseen sisältöön luo uusia palveluideoita sekä mobiili- että internetverkkoihin. Nämä palvelut kehitetään usein erikseen, jolloin saman sisällön käyttäminen eri pääsymenetelmin ei ole mahdollista. Sisältömuunnos on mahdollista sisällön ja muotoilun eriyttämisellä, joka puolestaan vaatii informaatioyksiköiden merkkauksen sisältöä kuvaavilla lisätiedoilla. Tässä diplomityössä tutkitaan Extensible Markup Languagen (XML) käyttöä yhdistyneiden palvelujen sisältömuunnoksessa. Nykyisiä ja tulevia palveluita ja verkkoja tarkastellaan sekä sisällön että liiketoiminnan kannalta. Lisäksi esitellään lyhyesti omia ajatuksia ja käsityksiä yhdistyneistä palveluista ja informaation täsmällisyydestä. Työn käytännön osuudessa kuvataan itse suunniteltu palvelualusta sekä esitellään sen avulla rakennettuja sovelluksia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master’s thesis aims to study and represent from literature how evolutionary algorithms are used to solve different search and optimisation problems in the area of software engineering. Evolutionary algorithms are methods, which imitate the natural evolution process. An artificial evolution process evaluates fitness of each individual, which are solution candidates. The next population of candidate solutions is formed by using the good properties of the current population by applying different mutation and crossover operations. Different kinds of evolutionary algorithm applications related to software engineering were searched in the literature. Applications were classified and represented. Also the necessary basics about evolutionary algorithms were presented. It was concluded, that majority of evolutionary algorithm applications related to software engineering were about software design or testing. For example, there were applications about classifying software production data, project scheduling, static task scheduling related to parallel computing, allocating modules to subsystems, N-version programming, test data generation and generating an integration test order. Many applications were experimental testing rather than ready for real production use. There were also some Computer Aided Software Engineering tools based on evolutionary algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considered the current situation of biofuels markets in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 21% of the total energy consumption in 2006. Almost 80% of the wood-based energy is recovered from industrial by-products and residues. Finland has commitment itself to maintaining its greenhouse gas emissions at the 1990 level, at the highest, during the period 2008–2012. The energy and climate policy carried out in recent years has been based on the National Energy and Climate introduced in 2005. The Finnish energy policy aims to achieve the target, and a variety of measures are taken to promote the use of renewable energy sources and especially wood fuels. In 2007, the government started to prepare a new long-term (up to the year 2050) climate and energy strategy that will meet EU’s new targets for the reduction of green house gas emissions and the promotion of renewable energy sources. The new strategy will be introduced during 2008. The international biofuels trade has a substantial importance for the utilisation of bioenergy in Finland. In 2006, the total international trading of solid and liquid biofuels was approximately 64 PJ of which import was 61 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2006, as much as 24% of wood energy was based on foreignorigin wood. Wood pellets and tall oil form the majority of export streams of biofuels. The indirect import of wood fuels increased almost 10% in 2004–2006, while the direct trade of solid and liquid biofuels has been almost constant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study considered the current situation of solid and liquid biomass fuels in Finland. The fact that industry consumes more than half of the total primary energy, widely applied combined heat and power production and a high share of solid biomass fuels in the total energy consumption are specific to the Finnish energy system. Wood is the most important source of bioenergy in Finland, representing 20% of the total energy consumption in 2007. Almost 80% of the woodbased energy is recovered from industrial by-products and residues. As a member of the European Union, Finland has committed itself to the Union’s climate and energy targets, such as reducing its overall emissions of green house gases to at least 20% below 1990 levels by 2020, and increasing the share of renewable energy in the gross final consumption. The renewable energy target approved for Finland is 38%. The present National Climate and Energy Strategy was introduced in November 2008. The strategy covers climate and energy policy measures up to 2020, and in brief thereafter, up to 2050. In recent years, the actual emissions have exceeded the Kyoto commitment and the trend of emissions is on the increase. In 2007, the share of renewable energy in the gross final energy consumption was approximately 25% (360 PJ). Without new energy policy measures, the final consumption of renewable energy would increase to 380 PJ, which would be approximately only 31% of the final energy consumption. In addition, green house gas emissions would exceed the 1990 levels by 20%. Meeting the targets will need the adoption of more active energy policy measures in coming years. The international trade of biomass fuels has a substantial importance for the utilisation of bioenergy in Finland. In 2007, the total international trading of solid and liquid biomass fuels was approximately 77 PJ, of which import was 62 PJ. Most of the import is indirect and takes place within the forest industry’s raw wood imports. In 2007, as much as 21% of wood energy was based on foreign-origin wood. Wood pellets and tall oil form the majority of export streams of biomass fuels. The indirect import of wood fuels peaked in 2006 to 61 PJ. The foreseeable decline in raw wood import to Finland will decrease the indirect import of wood fuels. In 2004– 2007, the direct trade of solid and liquid biomass fuels has been on a moderate growth path. In 2007, the import of palm oil and export of bio-diesel emerged, as a large, 170 000 t/yr biodiesel plant came into operation in Porvoo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, simple methods have been sought to lower the teacher’s threshold to start to apply constructive alignment in instruction. From the phases of the instructional process, aspects that can be improved with little effort by the teacher have been identified. Teachers have been interviewed in order to find out what students actually learn in computer science courses. A quantitative analysis of the structured interviews showed that in addition to subject specific skills and knowledge, students learn many other skills that should be mentioned in the learning outcomes of the course. The students’ background, such as their prior knowledge, learning style and culture, affects how they learn in a course. A survey was conducted to map the learning styles of computer science students and to see if their cultural background affected their learning style. A statistical analysis of the data indicated that computer science students are different learners than engineering students in general and that there is a connection between the student’s culture and learning style. In this thesis, a simple self-assessment scale that is based on Bloom’s revised taxonomy has been developed. A statistical analysis of the test results indicates that in general the scale is quite reliable, but single students still slightly overestimate or under-estimate their knowledge levels. For students, being able to follow their own progress is motivating, and for a teacher, self-assessment results give information about how the class is proceeding and what the level of the students’ knowledge is.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Formal methods provide a means of reasoning about computer programs in order to prove correctness criteria. One subtype of formal methods is based on the weakest precondition predicate transformer semantics and uses guarded commands as the basic modelling construct. Examples of such formalisms are Action Systems and Event-B. Guarded commands can intuitively be understood as actions that may be triggered when an associated guard condition holds. Guarded commands whose guards hold are nondeterministically chosen for execution, but no further control flow is present by default. Such a modelling approach is convenient for proving correctness, and the Refinement Calculus allows for a stepwise development method. It also has a parallel interpretation facilitating development of concurrent software, and it is suitable for describing event-driven scenarios. However, for many application areas, the execution paradigm traditionally used comprises more explicit control flow, which constitutes an obstacle for using the above mentioned formal methods. In this thesis, we study how guarded command based modelling approaches can be conveniently and efficiently scheduled in different scenarios. We first focus on the modelling of trust for transactions in a social networking setting. Due to the event-based nature of the scenario, the use of guarded commands turns out to be relatively straightforward. We continue by studying modelling of concurrent software, with particular focus on compute-intensive scenarios. We go from theoretical considerations to the feasibility of implementation by evaluating the performance and scalability of executing a case study model in parallel using automatic scheduling performed by a dedicated scheduler. Finally, we propose a more explicit and non-centralised approach in which the flow of each task is controlled by a schedule of its own. The schedules are expressed in a dedicated scheduling language, and patterns assist the developer in proving correctness of the scheduled model with respect to the original one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social tagging evolved in response to a need to tag heterogeneous objects, the automated tagging of which is usually not feasible by current technological means. Social tagging can be used for more flexible competence management within organizations. The profiles of employees can be built in the form of groups of tags, as employees tag each other, based on their familiarity of each other’s expertise. This can serve as a replacement for the more traditional competence management approaches, which usually become outdated due to social and organizational hurdles, and obsolete data. These limitations can be overcome by people tagging, as the information revealed by such tags is usually based on most recent employee interaction and knowledge. Task management as part of personal information management aims at the support of users’ individual task handling. This can include collaborating with other individuals, sharing one’s knowledge, both functional and process-related, and distributing documents and web resources. In this context, Task patterns can be used as templates that collect information and experience around tasks associated to it during run time, facilitating agility. The effective collaboration among contributors necessitates the means to find the appropriate individuals to work with on the task, and this can be made possible by using social tagging to describe individual competencies. The goal of this study is to support finding and tagging people within task management, through the effective exploitation of the work/task context. This involves the utilization of knowledge of the workers’ expertise, nature of the task/task pattern and information available from the documents and web resources attached to the task. Vice versa, task management provides an excellent environment for social tagging due to the task context that already provides suitable tags. The study also aims at assisting users of the task management solution with the collaborative construction of light-weight ontology by inferring semantic relations between tags. The thesis project aims at an implementation of people finding & tagging within the java application for task management that consumes web services, which provide the required ontology for the organization.