12 resultados para TWO-PHOTON ABSORPTION

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we report the observation of the blue visible fluorescence at 420 nm in rubidium vapour as a result of two-photon absorption excited by femtosecond laser pulses 790 nm. After experimental investigation of the spa-tial and spectral characteristics of the obtained emission we can claim that mechanism of this coherent fluorescence at 420 nm was not caused by ampli-fied spontaneous emission, but represents the nondegenerate four-wave mixing. As a probable outcome of this investigation an opportunity of creation an ultrafast all-optical switcher might appear.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the heavily overlapping symptoms, pathogen-specific diagnosis and treatment of infectious diseases is difficult based on clinical symptoms alone. Therefore, patients are often treated empirically. More efficient treatment and management of infectious diseases would require rapid point-of-care compatible in vitro diagnostic methods. However, current point-of-care methods are unsatisfactory in performance and in cost structure. The lack of pointof- care methods results in unnecessary use of antibiotics, suboptimal use of virus-specific drugs, and compromised patient care. In this thesis, the applicability of a two-photon excitation fluorometry is evaluated as a tool for rapid detection of infectious diseases. New separation-free immunoassay methodologies were developed and validated for the following application areas: general inflammation markers, pathogen-specific antibodies, pathogen-specific antigens, and antimicrobial susceptibility testing. In addition, dry-reagent methodology and nanoparticulate tracers are introduced in context to the technique. The results show that the new assay technique is a versatile tool for rapid detection of infectious diseases in many different application areas. One particularly attractive area is rapid multianalyte testing of respiratory infections, where the technique was shown to allow simple assay protocols and comparable performance to the state-of-the-art laboratory methods. If implemented in clinical diagnostic use, the new methods could improve diagnostic testing routines, especially in rapid testing of respiratory tract infections.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Control of the world-wide spread of methicillin-resistant Staphylococcus aureus (MRSA) has been unsuccessful in most developed countries. A few countries have been able to maintain a low MRSA prevalence, plausibly due to their strict MRSA control policies. Such policies require wide-scale screening of patients with suspected MRSA colonization, in order to nurse the MRSA-positive patients in contact isolation. The aim of this study was to develop and introduce a 2-photon excited fluorescence detection (TPX) technique for screening of MRSA directly from clinical samples. The assay principle involves specific online immunometric monitoring of S. aureus growth under selective antibiotic pressure. After the novel TPX approach had been set up, its applicability for the detection of MRSA was evaluated using a large MRSA collection including practically all epidemic MRSA strains identified in Finland between 1991 and 2009. The TPX assay was found both sensitive (97.9%) and specific (94.1%) in this epidemiological setting, illustrating that the method is tolerant to wide biological variation as well as to environments with rapidly emerging MRSA strains. When MRSA was screened directly from colonization samples, all patients positive for MRSA by conventional methods were positive also by the TPX assay. The assay capacity was 48 samples per a test run, and the median time required for confirmation of a true-positive screening test result was 3 h 26 min. Collectively, the findings presented in this thesis suggest that the TPX MRSA screening assay could be applicable for direct screening of MRSA colonization samples without any prior steps of isolation. This can potentially mean that contact isolation of suspected carriers testing negative could be discontinued earlier, thereby reducing the costs and burden associated with the containment of MRSA. In case of infection, a positive test result would ensure an early onset of effective therapy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this thesis three experiments with atomic hydrogen (H) at low temperatures T<1 K are presented. Experiments were carried out with two- (2D) and three-dimensional (3D) H gas, and with H atoms trapped in solid H2 matrix. The main focus of this work is on interatomic interactions, which have certain specific features in these three systems considered. A common feature is the very high density of atomic hydrogen, the systems are close to quantum degeneracy. Short range interactions in collisions between atoms are important in gaseous H. The system of H in H2 differ dramatically because atoms remain fixed in the H2 lattice and properties are governed by long-range interactions with the solid matrix and with H atoms. The main tools in our studies were the methods of magnetic resonance, with electron spin resonance (ESR) at 128 GHz being used as the principal detection method. For the first time in experiments with H in high magnetic fields and at low temperatures we combined ESR and NMR to perform electron-nuclear double resonance (ENDOR) as well as coherent two-photon spectroscopy. This allowed to distinguish between different types of interactions in the magnetic resonance spectra. Experiments with 2D H gas utilized the thermal compression method in homogeneous magnetic field, developed in our laboratory. In this work methods were developed for direct studies of 3D H at high density, and for creating high density samples of H in H2. We measured magnetic resonance line shifts due to collisions in the 2D and 3D H gases. First we observed that the cold collision shift in 2D H gas composed of atoms in a single hyperfine state is much smaller than predicted by the mean-field theory. This motivated us to carry out similar experiments with 3D H. In 3D H the cold collision shift was found to be an order of magnitude smaller for atoms in a single hyperfine state than that for a mixture of atoms in two different hyperfine states. The collisional shifts were found to be in fair agreement with the theory, which takes into account symmetrization of the wave functions of the colliding atoms. The origin of the small shift in the 2D H composed of single hyperfine state atoms is not yet understood. The measurement of the shift in 3D H provides experimental determination for the difference of the scattering lengths of ground state atoms. The experiment with H atoms captured in H2 matrix at temperatures below 1 K originated from our work with H gas. We found out that samples of H in H2 were formed during recombination of gas phase H, enabling sample preparation at temperatures below 0.5 K. Alternatively, we created the samples by electron impact dissociation of H2 molecules in situ in the solid. By the latter method we reached highest densities of H atoms reported so far, 3.5(5)x1019 cm-3. The H atoms were found to be stable for weeks at temperatures below 0.5 K. The observation of dipolar interaction effects provides a verification for the density measurement. Our results point to two different sites for H atoms in H2 lattice. The steady-state nuclear polarizations of the atoms were found to be non-thermal. The possibility for further increase of the impurity H density is considered. At higher densities and lower temperatures it might be possible to observe phenomena related to quantum degeneracy in solid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The drug discovery process is facing new challenges in the evaluation process of the lead compounds as the number of new compounds synthesized is increasing. The potentiality of test compounds is most frequently assayed through the binding of the test compound to the target molecule or receptor, or measuring functional secondary effects caused by the test compound in the target model cells, tissues or organism. Modern homogeneous high-throughput-screening (HTS) assays for purified estrogen receptors (ER) utilize various luminescence based detection methods. Fluorescence polarization (FP) is a standard method for ER ligand binding assay. It was used to demonstrate the performance of two-photon excitation of fluorescence (TPFE) vs. the conventional one-photon excitation method. As result, the TPFE method showed improved dynamics and was found to be comparable with the conventional method. It also held potential for efficient miniaturization. Other luminescence based ER assays utilize energy transfer from a long-lifetime luminescent label e.g. lanthanide chelates (Eu, Tb) to a prompt luminescent label, the signal being read in a time-resolved mode. As an alternative to this method, a new single-label (Eu) time-resolved detection method was developed, based on the quenching of the label by a soluble quencher molecule when displaced from the receptor to the solution phase by an unlabeled competing ligand. The new method was paralleled with the standard FP method. It was shown to yield comparable results with the FP method and found to hold a significantly higher signal-tobackground ratio than FP. Cell-based functional assays for determining the extent of cell surface adhesion molecule (CAM) expression combined with microscopy analysis of the target molecules would provide improved information content, compared to an expression level assay alone. In this work, immune response was simulated by exposing endothelial cells to cytokine stimulation and the resulting increase in the level of adhesion molecule expression was analyzed on fixed cells by means of immunocytochemistry utilizing specific long-lifetime luminophore labeled antibodies against chosen adhesion molecules. Results showed that the method was capable of use in amulti-parametric assay for protein expression levels of several CAMs simultaneously, combined with analysis of the cellular localization of the chosen adhesion molecules through time-resolved luminescence microscopy inspection.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Upconversion photoluminescence is a unique property of mostly certain inorganic materials, which are capable of converting low-energy infrared radiation into a higher-energy emission at visible wavelengths. This anti-Stokes shift enables luminescence detection without autofluorescence, which makes the upconverting materials a highly suitable reporter technology for optical biosensing applications. Furthermore, they exhibit long luminescence lifetime with narrow bandwidths also at the optical window of biomaterials enabling luminescence measurements in challenging sample matrices, such as whole blood. The aim of this thesis was to study the unique properties and the applicability of nano-sized upconverting phosphors (UCNPs) as reporters in biosensing applications. To render the inorganic nanophosphors water-dispersible and biocompatible, they were subjected to a series of surface modifications starting with silica-encapsulation and ending with a bioconjugation step with an analyte-recognizing biomolecule. The paramagnetism of the lanthanide dopants in the nanophosphors was exploited to develop a highly selective separation method for the UCNP-bioconjugates based on the magnetic selectivity of the high gradient magnetic separation (HGMS) system. The applicability of the nano-sized UCNPs as reporters in challenging sample matrices was demonstrated in two homogeneous sensing applications based on upconversion resonance energy transfer (UC-RET). A chemosensor for intracellular pH was developed exploiting UC-RET between the UCNP and a fluorogenic pH-sensitive dye with strongly increasing fluorescence intensity in decreasing pH. The pH-independent emission of the UCNPs at 550 nm was used for referencing. The applicability of the pH-nanosensor for intracellular pH measurement was tested in HeLa cells, and the acidic pH of endosomes could be detected with a confocal fluorescence microscope. Furthermore, a competitive UC-RET-based assay for red blood cell folic acid was developed for the measurement of folate directly from a whole blood sample. The optically transparent window of biomaterials was used in both the excitation and the measurement of the UC-RET sensitized emission of a near-infrared acceptor dye to minimize sample absorption, and the anti-Stokes detection completely eliminated the Stokes-shifted autofluorescence. The upconversion photoluminescence efficiency is known to be dependent on crystallite size, because the increasing surface-to-volume ratio of nano-sized UCNPs renders them more susceptible to quenching effects of the environment than their bulk counterpart. Water is known to efficiently quench the luminescence of lanthanide dopants. In this thesis, the quenching mechanism of water was studied using luminescence decay measurements. Water was found to quench the luminescence of UCNPs by increasing the non-radiative relaxation of the excited state of Yb3+ sensitizer ion, which had a very strong quenching effect on upconversion luminescence intensity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosystem II (PSII) is susceptible to light-induced damage defined as photoinhibition. In natural conditions, plants are capable of repairing the photoinhibited PSII by on-going degradation and re-synthesis of the D1 reaction centre protein of PSII. Photoinhibition is induced by both visible and ultraviolet light and photoinhibition occurs under all light intensities with the same efficiency per photon. In my thesis work, I studied the reaction kinetics and mechanism of photoinhibition of PSII, as well as photoprotection in leaves of higher plants. Action spectroscopy was used to identify photoreceptors of photoinhibition. I found that the action spectrum of photoinhibition in vivo shows resemblance to the absorption spectra of manganese model compounds of the oxygen evolving complex (OEC) suggesting a role for manganese as a photoreceptor of photoinhibition under UV and visible light. In order to study the protective effect of non-photochemical quenching, the action spectrum was measured from leaves of wild type Arabidopsis thaliana and two mutants impaired in nonphotochemical quenching of chlorophyll a excitations. The findings of action spectroscopy and simulations of chlorophyll-based photoinhibition mechanisms suggested that quenching of antenna excitations protects less efficiently than would be expected if antenna chlorophylls were the only photoreceptors of photoinhibition. The reaction kinetics of prolonged photoinhibition was studied in leaves of Cucurbita maxima and Capsicum annuum. The results indicated that photoinhibitory decrease in both the oxygen evolution activity and ratio of variable to maximum fluorescence follows firstorder kinetics in vivo. The persistence of first-order kinetics suggests that already photoinhibited reaction centres do not protect against photoinhibition and that the mechanism of photoinhibition does not have a reversible intermediate. When Cucurbita maxima leaves were photoinhibited with saturating single-turnover flashes and continuous light, the light response curve of photoinhibition was found to be essentially a straight line with both types of illumination, suggesting that similar photoinhibition mechanisms might function during illumination with continuous light and during illumination with short flashes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both atom localization and Raman cooling, considered in the thesis, reflect recent progress in the area of all-optical methods. We focus on twodimensional (2D) case, using a four-level tripod-type atomic scheme for atom localization within the optical half-wavelength as well as for efficient subrecoil Raman cooling. In the first part, we discuss the principles of 1D atom localization, accompanying by an example of the measurement of a spontaneously-emitted photon. Modifying this example, one archives sub-wavelength localization of a three-level -type atom, measuring the population in its upper state. We go further and obtain 2D sub-wavelength localization for a four-level tripod-type atom. The upper-state population is classified according to the spatial distribution, which in turn forms such structures as spikes, craters and waves. The second part of the thesis is devoted to Raman cooling. The cooling process is controlled by a sequence of velocity-selective transfers from one to another ground state. So far, 1D deep subrecoil cooling has been carried out with the sequence of square or Blackman pulses, applied to -type atoms. In turn, we discuss the transfer of atoms by stimulated Raman adiabatic passage (STIRAP), which provides robustness against the pulse duration if the cooling time is not in any critical role. A tripod-type atomic scheme is used for the purpose of 2D Raman cooling, allowing one to increase the efficiency and simplify the realization of the cooling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this research work, the aim was to investigate the volumetric mass transfer coefficient [kLa] of oxygen in stirred tank in the presence of solid particle experimentally. The kLa correlations as a function of propeller rotation speed and flow rate of gas feed were studied. The O2 and CO2 absorption in water and in solid-liquid suspensions and heterogeneous precipitation of MgCO3 were thoroughly examined. The absorption experiments of oxygen were conducted in various systems like pure water and in aqueous suspensions of quartz and calcium carbonate particles. Secondly, the precipitation kinetics of magnesium carbonate was also investigated. The experiments were performed to study the reactive crystallization with magnesium hydroxide slurry and carbon dioxide gas by varying the feed rates of carbon dioxide and rotation speeds of mixer. The results of absorption and precipitation are evaluated by titration, total carbon (TC analysis), and ionic chromatrography (IC). For calcium carbonate, the particle concentration was varied from 17.4 g to 2382 g with two size fractions: 5 µm and 45-63 µm sieves. The kLa and P/V values of 17.4 g CaCO3 with particle size of 5µm and 45-63 µm were 0.016 s-1 and 2400 W/m3. At 69.9 g concentration of CaCO3, the achieved kLa is 0.014 s-1 with particle size of 5 µm and 0.017 s-1 with particle size of 45 to 63 µm. Further increase in concentration of calcium carbonate, i.e. 870g and 2382g , does not affect volumetric mass transfer coeffienct of oxygen. It could be concluded from absorption results that maximum value of kLa is 0.016 s-1. Also particle size and concentration does affect the transfer rate to some extend. For precipitation experiments, the constant concentration of Mg(OH)2 was 100 g and the rotation speed varied from 560 to 750 rpm, whereas the used feed rates of CO2 were 1 and 9 L/min. At 560 rpm and feed rate of CO2 is 1 L/min, the maximum value of Mg ion and TC were 0.25 mol/litre and 0.12 mol/litre with the residence time of 40 min. When flow rate of CO2 increased to 9 L/min with same 560 rpm, the achieved value of Mg and TC were 0.3 mol/litre and 0.12 mol/L with shorter residence time of 30 min. It is concluded that feed rate of CO2 is dominant in precipitation experiments and it has a key role in dissociation and reaction of magnesium hydroxide in precipitation of magnesium carbonate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Since the discovery of the up-conversion phenomenon, there has been an ever increasing interest in up-converting phosphors in which the absorption of two or more low energy photons is followed by emission of a higher energy photon. Most up-conversion luminescence materials operate by using a combination of a trivalent rare earth (lanthanide) sensitizer (e.g. Yb or Er) and an activator (e.g. Er, Ho, Tm or Pr) ion in a crystal lattice. Up-converting phosphors have a variety of potential applications as lasers and displays as well as inks for security printing (e.g. bank notes and bonds). One of the most sophisticated applications of lanthanide up-conversion luminescence is probably in medical diagnostics. However, there are some major problems in the use of photoluminescence based on the direct UV excitation in immunoassays. Human blood absorbs strongly UV radiation as well as the emission of the phosphor in the visible. A promising way to overcome the problems arising from the blood absorption is to use a long wavelength excitation and benefit from the up-conversion luminescence. Since there is practically no absorption by the whole-blood in the near IR region, it has no capability for up-conversion in the excitation wavelength region of the conventional up-converting phosphor based on the Yb3+ (sensitizer) and Er3+ (activator) combination. The aim of this work was to prepare nanocrystalline materials with high red (and green) up-conversion luminescence efficiency for use in quantitative whole-blood immunoassays. For coupling to biological compounds, nanometer-sized (crystallite size below 50 nm) up-converting phosphor particles are required. The nanocrystalline ZrO2:Yb3+,Er3+, Y2O2S:Yb3+,Er3+, NaYF4:Yb3+,Er3+ and NaRF4-NaR’F4 (R: Y, Yb, Er) materials, prepared with the combustion, sol-gel, flux, co-precipitation and solvothermal synthesis, were studied using the thermal analysis, FT-IR spectroscopy, transmission electron microscopy, EDX spectroscopy, XANES/EXAFS measurements, absorption spectroscopy, X-ray powder diffraction, as well as up-conversion and thermoluminescence spectroscopies. The effect of the impurities of the phosphors, crystallite size, as well as the crystal structure on the up-conversion luminescence intensity was analyzed. Finally, a new phenomenon, persistent up-conversion luminescence was introduced and discussed. For efficient use in bioassays, more work is needed to yield nanomaterials with smaller and more uniform crystallite sizes. Surface modifications need to be studied to improve the dispersion in water. On the other hand, further work must be carried out to optimize the persistent up-conversion luminescence of the nanomaterials to allow for their use as efficient immunoassay nanomaterials combining the advantages of both up-conversion and persistent luminescence.