4 resultados para TTR AMYLOID INHIBITOR
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Early Detection of Alzheimer's Disease Beta-amyloid Pathology -Applicability of Positron Emission Tomography with the Amyloid Radioligand 11C-PIB Accumulation of beta amyloid (Abeta) in the brain is characteristic for Alzheimer’s disease (AD). Carbon-11 labeled 2-(4’-methylaminophenyl)-6-hydroxybenzothiazole (11C-PIB) is a novel positron emission tomography (PET) amyloid imaging agent that appears to be applicable for in vivo Abeta plaque detection and quantitation. The biodistribution and radiation dosimetry of 11C-PIB were investigated in 16 healthy subjects. The reproducibility of a simplified 11C-PIB quantitation method was evaluated with a test-retest study on 6 AD patients and 4 healthy control subjects. Brain 11C-PIB uptake and its possible association with brain atrophy rates were studied over a two-year follow-up in 14 AD patients and 13 healthy controls. Nine monozygotic and 8 dizygotic twin pairs discordant for cognitive impairment and 9 unrelated controls were examined to determine whether brain Abeta accumulation could be detected with 11C-PIB PET in cognitively intact persons who are at increased genetic risk for AD. The highest absorbed radiation dose was received by the gallbladder wall (41.5 mjuGy/MBq). About 20 % of the injected radioactivity was excreted into urine, and the effective whole-body radiation dose was 4.7 mjuSv/MBq. Such a dose allows repeated scans of individual subjects. The reproducibility of the simplified 11C-PIB quantitation was good or excellent both at the regional level (VAR 0.9-5.5 %) and at the voxel level (VAR 4.2-6.4 %). 11C-PIB uptake did not increase during 24 months’ follow-up of subjects with mild or moderate AD, even though brain atrophy and cognitive decline progressed. Baseline neocortical 11C-PIB uptake predicted subsequent volumetric brain changes in healthy control subjects (r = 0.725, p = 0.005). Cognitively intact monozygotic co-twins – but not dizygotic co-twins – of memory-impaired subjects exhibited increased 11C-PIB uptake (117-121 % of control mean) in their temporal and parietal cortices and the posterior cingulate (p<0.05), when compared with unrelated controls. This increased uptake may be representative of an early AD process, and genetic factors seem to play an important role in the development of AD-like Abeta plaque pathology. 11C-PIB PET may be a useful method for patient selection and follow-up for early-phase intervention trials of novel therapeutic agents. AD might be detectable in high-risk individuals in its presymptomatic stage with 11C-PIB PET, which would have important consequences both for future diagnostics and for research on disease-modifying treatments.
Resumo:
Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by a severe loss of substantia nigra dopaminergic neurons leading to dopamine depletion in the striatum. PD affects movement, producing motor symptoms such as rigidity, tremor and bradykinesia. Non-motor symptoms include autonomic dysfunction, neurobehavioral problems and cognitive impairment, which may lead to dementia. The pathophysiological basis of cognitive impairment and dementia in PD is unclear. The aim of this thesis was to study the pathophysiological basis of cognitive impairment and dementia in PD. We evaluated the relation between frontostriatal dopaminergic dysfunction and the cognitive symptoms in PD patients with [18F]Fdopa PET. We also combined [C]PIB and [18F]FDG PET and magnetic resonance imaging in PD patients with and without dementia. In addition, we analysed subregional striatal [18F]Fdopa PET data to find out whether a simple ratio approach would reliably separate PD patients from healthy controls. The impaired dopaminergic function of the frontostriatal regions was related to the impairment in cognitive functions, such as memory and cognitive processing in PD patients. PD patients with dementia showed an impaired glucose metabolism but not amyloid deposition in the cortical brain regions, and the hypometabolism was associated with the degree of cognitive impairment. PD patients had atrophy, both in the prefrontal cortex and in the hippocampus, and the hippocampal atrophy was related to impaired memory. A single 15-min scan 75 min after a tracer injection seemed to be sufficient for separating patients with PD from healthy controls in a clinical research environment. In conclusion, the occurrence of cognitive impairment and dementia in PD seems to be multifactorial and relates to changes, such as reduced dopaminergic activity, hypometabolism, brain atrophy and rarely to amyloid accumulation.
Resumo:
This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.
Resumo:
Inhibition of the tumor suppressor protein phosphatase 2A (PP2A) activity has been identified as one of the five key alterations required for human cell transformation. Regardless of this crucial role in human cancer development, the detailed mechanisms by which PP2A inhibition occurs in human cancers remain largely uncharacterized. PP2A regulates a plethora of cellular signaling cascades. One of the targets of PP2A is Myc oncoprotein, which is destabilized and degraded in response to PP2A-mediated dephosphorylation of Myc serine 62. In this study we identify Cancerous Inhibitor of PP2A (CIP2A) as a previously uncharacterized endogenous inhibitor of PP2A in human cancer cells. CIP2A inhibits PP2A activity leading to subsequent stabilization of the Myc protein. CIP2A promotes malignant growth of cancer cells in vitro and xenograft tumor formation in vivo and is overexpressed in cancer. Moreover, we explored the effect of CIP2A on global transcriptional profiles and validated a CIP2A-dependent transcriptional signature. Analysis of the CIP2A signature revealed both Myc-dependent and -independent functions for CIP2A. Importantly, we demonstrate that the CIP2A signature has clinical relevance in human breast cancer subtypes. Finally, we identify the genes potentially mediating the long-term growth suppression in CIP2A depleted cancer cells. Taken together, this work identifies CIP2A as a novel human oncoprotein and describes its function in cancer cells. These results may open novel possibilities for patient stratification and therapeutic intervention of cancer.