2 resultados para Systemic Therapy

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The currently used forms of cancer therapy are associated with drug resistance and toxicity to healthy tissues. Thus, more efficient methods are needed for cancer-specific induction of growth arrest and programmed cell death, also known as apoptosis. Therapeutic forms of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) are investigated in clinical trials due to the capability of TRAIL to trigger apoptosis specifically in cancer cells by activation of cell surface death receptors. Many tumors, however, have acquired resistance to TRAIL-induced apoptosis and sensitizing drugs for combinatorial treatments are, therefore, in high demand. This study demonstrates that lignans, natural polyphenols enriched in seeds and cereal, have a remarkable sensitizing effect on TRAIL-induced cell death at non-toxic lignan concentrations. In TRAIL-resistant and androgen-dependent prostate cancer cells we observe that lignans repress receptor tyrosine kinase (RTK) activity and downregulate cell survival signaling via the Akt pathway, which leads to increased TRAIL sensitivity. A structure-activity relationship analysis reveals that the γ-butyrolactone ring of the dibenzylbutyrolactone lignans is essential for the rapidly reversible TRAIL-sensitizing activity of these compounds. Furthermore, the lignan nortrachelogenin (NTG) is identified as the most efficient of the 27 tested lignans and norlignans in sensitization of androgen-deprived prostate cancer cells to TRAIL-induced apoptosis. While this combinatorial anticancer approach may leave normal cells unharmed, several efficient cancer drugs are too toxic, insoluble or unstable to be used in systemic therapy. To enable use of such drugs and to protect normal cells from cytotoxic effects, cancer-targeted drug delivery vehicles of nanometer scale have recently been generated. The newly developed nanoparticle system that we tested in vitro for cancer cell targeting combines the efficient drug-loading capacity of mesoporous silica to the versatile particle surface functionalization of hyperbranched poly(ethylene imine), PEI. The mesoporous hybrid silica nanoparticles (MSNs) were functionalized with folic acid to promote targeted internalization by folate receptor overexpressing cancer cells. The presented results demonstrate that the developed carrier system can be employed in vitro for cancer selective delivery of adsorbed or covalently conjugated molecules and furthermore, for selective induction of apoptotic cell death in folate receptor expressing cancer cells. The tested carrier system displays potential for simultaneous delivery of several anticancer agents specifically to cancer cells also in vivo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The incidence of malignant melanoma of the skin has been steadily rising worldwide during the past decades. Most early detected primary tumors can be removed surgically and the prognosis is good. However, at the same time there still is no permanent cure for metastatic melanoma and its prognosis is poor, although lately new effective drugs have emerged. In this thesis, four different approaches of experimental therapy for metastatic melanoma were studied. Endogenous cis-Urocanic acid (UCA) is found in every individual’s skin, where exposure to UV light from the sun generates it from its inactive trans conformation. Cis- UCA was found to destroy malignant melanoma cells in culture under an acidified pH and sufficient concentration through caspase-3 mediated apoptosis. Furthermore, cis-UCA is able to considerably diminish the growth rate in human melanoma tumors on living SCID mice. Using replication-competent Semliki Forest viruses, human melanoma tumors grown in SCID mice were dramatically shrunken as the fulminant production of viruses in melanoma cells leads them to apoptosis within 72 hours. Small oligopeptides attaching to melanoma cells were identified using in vivo phage display. The melanoma-specific peptides found were further tested in vitro on adenoviruses. Ultimately, the adenoviral retargeting using the peptides was tested in vivo. One peptide homed to human transferring receptor upregulated on melanoma cells. In order to kill the malignant melanoma cells with the retargeted adenoviruses, the viruses should carry genetic material producing apoptotic proteins in the cancer tissue. TIMP-3 has been identified as a good candidate for such a protein, as it inhibits malignant cell adhesion as well as promotes apoptosis through a caspase-8 pathway. It is further shown here that adenovirally delivered TIMP-3 is even more potent, as it could kill non-adherent cancer cells, lacking the fully functional death receptor signalling pathway. Adenovirally delivered TIMP-2 also showed marked antitumor effects in human malignant melanoma xenografts on SCID mice both in ex vivo and systemic delivery.