3 resultados para Surface Learning

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The context of this study is corporate e-learning, with an explicit focus on how digital learning design can facilitate self-regulated learning (SRL). The field of e-learning is growing rapidly. An increasing number of corporations use digital technology and elearning for training their work force and customers. E-learning may offer economic benefits, as well as opportunities for interaction and communication that traditional teaching cannot provide. However, the evolving variety of digital learning contexts makes new demands on learners, requiring them to develop strategies to adapt and cope with novel learning tools. This study derives from the need to learn more about learning experiences in digital contexts in order to be able to design these properly for learning. The research question targets how the design of an e-learning course influences participants’ self-regulated learning actions and intentions. SRL involves learners’ ability to exercise agency in their learning. Micro-level SRL processes were targeted by exploring behaviour, cognition, and affect/motivation in relation to the design of the digital context. Two iterations of an e-learning course were tested on two groups of participants (N=17). However, the exploration of SRL extends beyond the educational design research perspective of comparing the effects of the changes to the course designs. The study was conducted in a laboratory with each participant individually. Multiple types of data were collected. However, the results presented in this thesis are based on screen observations (including eye tracking) and video-stimulated recall interviews. These data were integrated in order to achieve a broad perspective on SRL. The most essential change evident in the second course iteration was the addition of feedback during practice and the final test. Without feedback on actions there was an observable difference between those who were instruction-directed and those who were self-directed in manipulating the context and, thus, persisted whenever faced with problems. In the second course iteration, including the feedback, this kind of difference was not found. Feedback provided the tipping point for participants to regulate their learning by identifying their knowledge gaps and to explore the learning context in a targeted manner. Furthermore, the course content was consistently seen from a pragmatic perspective, which influenced the participants’ choice of actions, showing that real life relevance is an important need of corporate learners. This also relates to assessment and the consideration of its purpose in relation to participants’ work situation. The rigidity of the multiple choice questions, focusing on the memorisation of details, influenced the participants to adapt to an approach for surface learning. It also caused frustration in cases where the participants’ epistemic beliefs were incompatible with this kind of assessment style. Triggers of positive and negative emotions could be categorized into four levels: personal factors, instructional design of content, interface design of context, and technical solution. In summary, the key design choices for creating a positive learning experience involve feedback, flexibility, functionality, fun, and freedom. The design of the context impacts regulation of behaviour, cognition, as well as affect and motivation. The learners’ awareness of these areas of regulation in relation to learning in a specific context is their ability for design-based epistemic metareflection. I describe this metareflection as knowing how to manipulate the context behaviourally for maximum learning, being metacognitively aware of one’s learning process, and being aware of how emotions can be regulated to maintain volitional control of the learning situation. Attention needs to be paid to how the design of a digital learning context supports learners’ metareflective development as digital learners. Every digital context has its own affordances and constraints, which influence the possibilities for micro-level SRL processes. Empowering learners in developing their ability for design-based epistemic metareflection is, therefore, essential for building their digital literacy in relation to these affordances and constraints. It was evident that the implementation of e-learning in the workplace is not unproblematic and needs new ways of thinking about learning and how we create learning spaces. Digital contexts bring a new culture of learning that demands attitude change in how we value knowledge, measure it, define who owns it, and who creates it. Based on the results, I argue that digital solutions for corporate learning ought to be built as an integrated system that facilitates socio-cultural connectivism within the corporation. The focus needs to shift from designing static e-learning material to managing networks of social meaning negotiation as part of a holistic corporate learning ecology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

JNK1 is a MAP-kinase that has proven a significant player in the central nervous system. It regulates brain development and the maintenance of dendrites and axons. Several novel phosphorylation targets of JNK1 were identified in a screen performed in the Coffey lab. These proteins were mainly involved in the regulation of neuronal cytoskeleton, influencing the dynamics and stability of microtubules and actin. These structural proteins form the dynamic backbone for the elaborate architecture of the dendritic tree of a neuron. The initiation and branching of the dendrites requires a dynamic interplay between the cytoskeletal building blocks. Both microtubules and actin are decorated by associated proteins which regulate their dynamics. The dendrite-specific, high molecular weight microtubule associated protein 2 (MAP2) is an abundant protein in the brain, the binding of which stabilizes microtubules and influences their bundling. Its expression in non-neuronal cells induces the formation of neurite-like processes from the cell body, and its function is highly regulated by phosphorylation. JNK1 was shown to phosphorylate the proline-rich domain of MAP2 in vivo in a previous study performed in the group. Here we verify three threonine residues (T1619, T1622 and T1625) as JNK1 targets, the phosphorylation of which increases the binding of MAP2 to microtubules. This binding stabilizes the microtubules and increases process formation in non-neuronal cells. Phosphorylation-site mutants were engineered in the lab. The non-phosphorylatable mutant of MAP2 (MAP2- T1619A, T1622A, T1625A) in these residues fails to bind microtubules, while the pseudo-phosphorylated form, MAP2- T1619D, T1622D, Thr1625D, efficiently binds and induces process formation even without the presence of active JNK1. Ectopic expression of the MAP2- T1619D, T1622D, Thr1625D in vivo in mouse brain led to a striking increase in the branching of cortical layer 2/3 (L2/3) pyramidal neurons, compared to MAP2-WT. The dendritic complexity defines the receptive field of a neuron and dictates the output to the postsynaptic cells. Previous studies in the group indicated altered dendrite architecture of the pyramidal neurons in the Jnk1-/- mouse motor cortex. Here, we used Lucifer Yellow loading and Sholl analysis of neurons in order to study the dendritic branching in more detail. We report a striking, opposing effect in the absence of Jnk1 in the cortical layers 2/3 and 5 of the primary motor cortex. The basal dendrites of pyramidal neurons close to the pial surface at L2/3 show a reduced complexity. In contrast, the L5 neurons, which receive massive input from the L2/3 neurons, show greatly increased branching. Another novel substrate identified for JNK1 was MARCKSL1, a protein that regulates actin dynamics. It is highly expressed in neurons, but also in various cancer tissues. Three phosphorylation target residues for JNK1 were identified, and it was demonstrated that their phosphorylation reduces actin turnover and retards migration of these cells. Actin is the main cytoskeletal component in dendritic spines, the site of most excitatory synapses in pyramidal neurons. The density and gross morphology of the Lucifer Yellow filled dendrites were characterized and we show reduced density and altered morphology of spines in the motor cortex and in the hippocampal area CA3. The dynamic dendritic spines are widely considered to function as the cellular correlate during learning. We used a Morris water maze to test spatial memory. Here, the wild-type mice outperformed the knock-out mice during the acquisition phase of the experiment indicating impaired special memory. The L5 pyramidal neurons of the motor cortex project to the spinal cord and regulate the movement of distinct muscle groups. Thus the altered dendrite morphology in the motor cortex was expected to have an effect on the input-output balance in the signaling from the cortex to the lower motor circuits. A battery of behavioral tests were conducted for the wild-type and Jnk1-/- mice, and the knock-outs performed poorly compared to wild-type mice in tests assessing balance and fine motor movements. This study expands our knowledge of JNK1 as an important regulator of the dendritic fields of neurons and their manifestations in behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The general aim of the thesis was to study university students’ learning from the perspective of regulation of learning and text processing. The data were collected from the two academic disciplines of medical and teacher education, which share the features of highly scheduled study, a multidisciplinary character, a complex relationship between theory and practice and a professional nature. Contemporary information society poses new challenges for learning, as it is not possible to learn all the information needed in a profession during a study programme. Therefore, it is increasingly important to learn how to think and learn independently, how to recognise gaps in and update one’s knowledge and how to deal with the huge amount of constantly changing information. In other words, it is critical to regulate one’s learning and to process text effectively. The thesis comprises five sub-studies that employed cross-sectional, longitudinal and experimental designs and multiple methods, from surveys to eye tracking. Study I examined the connections between students’ study orientations and the ways they regulate their learning. In total, 410 second-, fourth- and sixth-year medical students from two Finnish medical schools participated in the study by completing a questionnaire measuring both general study orientations and regulation strategies. The students were generally deeply oriented towards their studies. However, they regulated their studying externally. Several interesting and theoretically reasonable connections between the variables were found. For instance, self-regulation was positively correlated with deep orientation and achievement orientation and was negatively correlated with non-commitment. However, external regulation was likewise positively correlated with deep orientation and achievement orientation but also with surface orientation and systematic orientation. It is argued that external regulation might function as an effective coping strategy in the cognitively loaded medical curriculum. Study II focused on medical students’ regulation of learning and their conceptions of the learning environment in an innovative medical course where traditional lectures were combined wth problem-based learning (PBL) group work. First-year medical and dental students (N = 153) completed a questionnaire assessing their regulation strategies of learning and views about the PBL group work. The results indicated that external regulation and self-regulation of the learning content were the most typical regulation strategies among the participants. In line with previous studies, self-regulation wasconnected with study success. Strictly organised PBL sessions were not considered as useful as lectures, although the students’ views of the teacher/tutor and the group were mainly positive. Therefore, developers of teaching methods are challenged to think of new solutions that facilitate reflection of one’s learning and that improve the development of self-regulation. In Study III, a person-centred approach to studying regulation strategies was employed, in contrast to the traditional variable-centred approach used in Study I and Study II. The aim of Study III was to identify different regulation strategy profiles among medical students (N = 162) across time and to examine to what extent these profiles predict study success in preclinical studies. Four regulation strategy profiles were identified, and connections with study success were found. Students with the lowest self-regulation and with an increasing lack of regulation performed worse than the other groups. As the person-centred approach enables us to individualise students with diverse regulation patterns, it could be used in supporting student learning and in facilitating the early diagnosis of learning difficulties. In Study IV, 91 student teachers participated in a pre-test/post-test design where they answered open-ended questions about a complex science concept both before and after reading either a traditional, expository science text or a refutational text that prompted the reader to change his/her beliefs according to scientific beliefs about the phenomenon. The student teachers completed a questionnaire concerning their regulation and processing strategies. The results showed that the students’ understanding improved after text reading intervention and that refutational text promoted understanding better than the traditional text. Additionally, regulation and processing strategies were found to be connected with understanding the science phenomenon. A weak trend showed that weaker learners would benefit more from the refutational text. It seems that learners with effective learning strategies are able to pick out the relevant content regardless of the text type, whereas weaker learners might benefit from refutational parts that contrast the most typical misconceptions with scientific views. The purpose of Study V was to use eye tracking to determine how third-year medical studets (n = 39) and internal medicine residents (n = 13) read and solve patient case texts. The results revealed differences between medical students and residents in processing patient case texts; compared to the students, the residents were more accurate in their diagnoses and processed the texts significantly faster and with a lower number of fixations. Different reading patterns were also found. The observed differences between medical students and residents in processing patient case texts could be used in medical education to model expert reasoning and to teach how a good medical text should be constructed. The main findings of the thesis indicate that even among very selected student populations, such as high-achieving medical students or student teachers, there seems to be a lot of variation in regulation strategies of learning and text processing. As these learning strategies are related to successful studying, students enter educational programmes with rather different chances of managing and achieving success. Further, the ways of engaging in learning seldom centre on a single strategy or approach; rather, students seem to combine several strategies to a certain degree. Sometimes, it can be a matter of perspective of which way of learning can be considered best; therefore, the reality of studying in higher education is often more complicated than the simplistic view of self-regulation as a good quality and external regulation as a harmful quality. The beginning of university studies may be stressful for many, as the gap between high school and university studies is huge and those strategies that were adequate during high school might not work as well in higher education. Therefore, it is important to map students’ learning strategies and to encourage them to engage in using high-quality learning strategies from the beginning. Instead of separate courses on learning skills, the integration of these skills into course contents should be considered. Furthermore, learning complex scientific phenomena could be facilitated by paying attention to high-quality learning materials and texts and other support from the learning environment also in the university. Eye tracking seems to have great potential in evaluating performance and growing diagnostic expertise in text processing, although more research using texts as stimulus is needed. Both medical and teacher education programmes and the professions themselves are challenging in terms of their multidisciplinary nature and increasing amounts of information and therefore require good lifelong learning skills during the study period and later in work life.