45 resultados para Supervised classifier
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis is about detection of local image features. The research topic belongs to the wider area of object detection, which is a machine vision and pattern recognition problem where an object must be detected (located) in an image. State-of-the-art object detection methods often divide the problem into separate interest point detection and local image description steps, but in this thesis a different technique is used, leading to higher quality image features which enable more precise localization. Instead of using interest point detection the landmark positions are marked manually. Therefore, the quality of the image features is not limited by the interest point detection phase and the learning of image features is simplified. The approach combines both interest point detection and local description into one phase for detection. Computational efficiency of the descriptor is therefore important, leaving out many of the commonly used descriptors as unsuitably heavy. Multiresolution Gabor features has been the main descriptor in this thesis and improving their efficiency is a significant part. Actual image features are formed from descriptors by using a classifierwhich can then recognize similar looking patches in new images. The main classifier is based on Gaussian mixture models. Classifiers are used in one-class classifier configuration where there are only positive training samples without explicit background class. The local image feature detection method has been tested with two freely available face detection databases and a proprietary license plate database. The localization performance was very good in these experiments. Other applications applying the same under-lying techniques are also presented, including object categorization and fault detection.
Resumo:
In this thesis author approaches the problem of automated text classification, which is one of basic tasks for building Intelligent Internet Search Agent. The work discusses various approaches to solving sub-problems of automated text classification, such as feature extraction and machine learning on text sources. Author also describes her own multiword approach to feature extraction and pres-ents the results of testing this approach using linear discriminant analysis based classifier, and classifier combining unsupervised learning for etalon extraction with supervised learning using common backpropagation algorithm for multilevel perceptron.
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
The subject of the thesis is automatic sentence compression with machine learning, so that the compressed sentences remain both grammatical and retain their essential meaning. There are multiple possible uses for the compression of natural language sentences. In this thesis the focus is generation of television program subtitles, which often are compressed version of the original script of the program. The main part of the thesis consists of machine learning experiments for automatic sentence compression using different approaches to the problem. The machine learning methods used for this work are linear-chain conditional random fields and support vector machines. Also we take a look which automatic text analysis methods provide useful features for the task. The data used for machine learning is supplied by Lingsoft Inc. and consists of subtitles in both compressed an uncompressed form. The models are compared to a baseline system and comparisons are made both automatically and also using human evaluation, because of the potentially subjective nature of the output. The best result is achieved using a CRF - sequence classification using a rich feature set. All text analysis methods help classification and most useful method is morphological analysis. Tutkielman aihe on suomenkielisten lauseiden automaattinen tiivistäminen koneellisesti, niin että lyhennetyt lauseet säilyttävät olennaisen informaationsa ja pysyvät kieliopillisina. Luonnollisen kielen lauseiden tiivistämiselle on monta käyttötarkoitusta, mutta tässä tutkielmassa aihetta lähestytään television ohjelmien tekstittämisen kautta, johon käytännössä kuuluu alkuperäisen tekstin lyhentäminen televisioruudulle paremmin sopivaksi. Tutkielmassa kokeillaan erilaisia koneoppimismenetelmiä tekstin automaatiseen lyhentämiseen ja tarkastellaan miten hyvin erilaiset luonnollisen kielen analyysimenetelmät tuottavat informaatiota, joka auttaa näitä menetelmiä lyhentämään lauseita. Lisäksi tarkastellaan minkälainen lähestymistapa tuottaa parhaan lopputuloksen. Käytetyt koneoppimismenetelmät ovat tukivektorikone ja lineaarisen sekvenssin mallinen CRF. Koneoppimisen tukena käytetään tekstityksiä niiden eri käsittelyvaiheissa, jotka on saatu Lingsoft OY:ltä. Luotuja malleja vertaillaan Lopulta mallien lopputuloksia evaluoidaan automaattisesti ja koska teksti lopputuksena on jossain määrin subjektiivinen myös ihmisarviointiin perustuen. Vertailukohtana toimii kirjallisuudesta poimittu menetelmä. Tutkielman tuloksena paras lopputulos saadaan aikaan käyttäen CRF sekvenssi-luokittelijaa laajalla piirrejoukolla. Kaikki kokeillut teksin analyysimenetelmät auttavat luokittelussa, joista tärkeimmän panoksen antaa morfologinen analyysi.
Resumo:
Illnesses related to the heart are one of the major reasons for death all over the world causing many people to lose their lives in last decades. The good news is that many of those sicknesses are preventable if they are spotted in early stages. On the other hand, the number of the doctors are much lower than the number of patients. This will makes the auto diagnosing of diseases even more and more essential for humans today. Furthermore, when it comes to the diagnosing methods and algorithms, the current state of the art is lacking a comprehensive study on the comparison between different diagnosis solutions. Not having a single valid diagnosing solution has increased the confusion among scholars and made it harder for them to take further steps. This master thesis will address the issue of reliable diagnosing algorithm. We investigate ECG signals and the relation between different diseases and the heart’s electrical activity. Also, we will discuss the necessary steps needed for auto diagnosing the heart diseases including the literatures discussing the topic. The main goal of this master thesis is to find a single reliable diagnosing algorithm and quest for the best classifier to date for heart related sicknesses. Five most suited and most well-known classifiers, such as KNN, CART, MLP, Adaboost and SVM, have been investigated. To have a fair comparison, the ex-periment condition is kept the same for all classification methods. The UCI repository arrhythmia dataset will be used and the data will not be preprocessed. The experiment results indicates that AdaBoost noticeably classifies different diseases with a considera-bly better accuracy.
Resumo:
Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.
Resumo:
The research of condition monitoring of electric motors has been wide for several decades. The research and development at universities and in industry has provided means for the predictive condition monitoring. Many different devices and systems are developed and are widely used in industry, transportation and in civil engineering. In addition, many methods are developed and reported in scientific arenas in order to improve existing methods for the automatic analysis of faults. The methods, however, are not widely used as a part of condition monitoring systems. The main reasons are, firstly, that many methods are presented in scientific papers but their performance in different conditions is not evaluated, secondly, the methods include parameters that are so case specific that the implementation of a systemusing such methods would be far from straightforward. In this thesis, some of these methods are evaluated theoretically and tested with simulations and with a drive in a laboratory. A new automatic analysis method for the bearing fault detection is introduced. In the first part of this work the generation of the bearing fault originating signal is explained and its influence into the stator current is concerned with qualitative and quantitative estimation. The verification of the feasibility of the stator current measurement as a bearing fault indicatoris experimentally tested with the running 15 kW induction motor. The second part of this work concentrates on the bearing fault analysis using the vibration measurement signal. The performance of the micromachined silicon accelerometer chip in conjunction with the envelope spectrum analysis of the cyclic bearing faultis experimentally tested. Furthermore, different methods for the creation of feature extractors for the bearing fault classification are researched and an automatic fault classifier using multivariate statistical discrimination and fuzzy logic is introduced. It is often important that the on-line condition monitoring system is integrated with the industrial communications infrastructure. Two types of a sensor solutions are tested in the thesis: the first one is a sensor withcalculation capacity for example for the production of the envelope spectra; the other one can collect the measurement data in memory and another device can read the data via field bus. The data communications requirements highly depend onthe type of the sensor solution selected. If the data is already analysed in the sensor the data communications are needed only for the results but in the other case, all measurement data need to be transferred. The complexity of the classification method can be great if the data is analysed at the management level computer, but if the analysis is made in sensor itself, the analyses must be simple due to the restricted calculation and memory capacity.
Resumo:
Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.
Resumo:
Puhdastilojen suunnittelussa pyritään saamaan hallittu ja valvottu ilmanpuhtaus luokiteltuun tilaan.Luokittelu tapahtuu puhdastilastandardeilla, lisäksi lääkevalmisteita valmistettavassa tilassa GMP -säädösten mukaisin luokituksin. Puhdastilastandardi ISO 14644 käsittää seitsemän osaa, jossa on käsitelty puhdastilaa koskevia määräyksiä suunnittelusta käyttöön ja testaukseen. GMP-säädökset sisältävät yhdeksän kappaletta, joista kappale 3: 'Tilat ja laitteet' on keskeinen osa lääkeainevalmistuksen puhdastilasuunnittelua. Puhtaan ilman aikaansaamiseksi puhdastilaan merkittävimmät roolit ovat ilmanvaihdolla, puhdastilarakenteilla ja rakennusautomaatiolla. Ilma voidaan tuoda tilaan kolmella eri periaatteella. Ilmaa tuodaan tilaan yhdensuuntaisesti, turbulenttisesti tai sekavirtauksena HEPA -suodattimien kautta, joilla varmistetaan epäpuhtauksien korkea suodatusaste. Ilmapoistetaan rei'itettyjen, korotettujen lattioiden kautta tai tilan alaosassa olevien poistoilmasäleikköjen kautta, josta se johdetaan noin 75-90%:sti kierrätettynä takaisin tilaan. Lääketeollisuudessa rei'itettyjä, korotettuja lattioita eivoida käyttää kontaminaatiovaaran, vuoksi. Tilaan suunniteltuja olosuhteita ylläpidetään rakennusautomaation avulla ja monitorointijärjestelmällä valvotaan tilassa olevan ilman laatua. Kaikki GMP-luokituksen mukaiset puhdastilat tulee validoida. Validointiin kuuluu teknisten järjestelmien kvalifiointi ja koko prosessin validointi. Teknisten järjestel-mien kvalifiointi käsittää suunnitelmien tarkastuksen (DQ), asennus - ja käyttöönotto tarkastukset (IQ), toiminnan testauksen (OQ) ja suorituksen testauksen (PQ). Kvali-fiointi kuuluu yhtenä osa-alueena validointiin. Prosessin validointi on osa yrityksen laadunvarmistusta. Validoinnilla hankitaan dokumentoidut todisteet siitä, että tila tai prosessi todella täyttää annetut vaatimukset. Tässä työssä laadittiin esimerkinomainen kvalifiointisuunnitelma puhdastilan tekni-sille järjestelmille. Suunnitelma sisältää asennus- ja käyttöönoton mukaiset tarkastukset (IQ)ja toiminnan aikaiset testaukset (OQ).
Resumo:
Tässä työssä raportoidaan hybridihitsauksesta otettujen suurnopeuskuvasarjojen automaattisen analyysijärjestelmän kehittäminen.Järjestelmän tarkoitus oli tuottaa tietoa, joka avustaisi analysoijaa arvioimaan kuvatun hitsausprosessin laatua. Tutkimus keskittyi valokaaren taajuuden säännöllisyyden ja lisäainepisaroiden lentosuuntien mittaamiseen. Valokaaria havaittiin kuvasarjoista sumean c-means-klusterointimenetelmän avullaja perättäisten valokaarien välistä aikaväliä käytettiin valokaaren taajuuden säännöllisyyden mittarina. Pisaroita paikannettiin menetelmällä, jossa yhdistyi pääkomponenttianalyysi ja tukivektoriluokitin. Kalman-suodinta käytettiin tuottamaan arvioita pisaroiden lentosuunnista ja nopeuksista. Lentosuunnanmääritysmenetelmä luokitteli pisarat niiden arvioitujen lentosuuntien perusteella. Järjestelmän kehittämiseen käytettävissä olleet kuvasarjat poikkesivat merkittävästi toisistaan kuvanlaadun ja pisaroiden ulkomuodon osalta, johtuen eroista kuvaus- ja hitsausprosesseissa. Analyysijärjestelmä kehitettiin toimimaan pienellä osajoukolla kuvasarjoja, joissa oli tietynlainen kuvaus- ja hitsausprosessi ja joiden kuvanlaatu ja pisaroiden ulkomuoto olivat samankaltaisia, mutta järjestelmää testattiin myös osajoukon ulkopuolisilla kuvasarjoilla. Testitulokset osoittivat, että lentosuunnanmääritystarkkuus oli kohtuullisen suuri osajoukonsisällä ja pieni muissa kuvasarjoissa. Valokaaren taajuuden säännöllisyyden määritys oli tarkka useammassa kuvasarjassa.
Resumo:
Luokittelujärjestelmää suunniteltaessa tarkoituksena on rakentaa systeemi, joka pystyy ratkaisemaan mahdollisimman tarkasti tutkittavan ongelma-alueen. Hahmontunnistuksessa tunnistusjärjestelmän ydin on luokitin. Luokittelun sovellusaluekenttä on varsin laaja. Luokitinta tarvitaan mm. hahmontunnistusjärjestelmissä, joista kuvankäsittely toimii hyvänä esimerkkinä. Myös lääketieteen parissa tarkkaa luokittelua tarvitaan paljon. Esimerkiksi potilaan oireiden diagnosointiin tarvitaan luokitin, joka pystyy mittaustuloksista päättelemään mahdollisimman tarkasti, onko potilaalla kyseinen oire vai ei. Väitöskirjassa on tehty similaarisuusmittoihin perustuva luokitin ja sen toimintaa on tarkasteltu mm. lääketieteen paristatulevilla data-aineistoilla, joissa luokittelutehtävänä on tunnistaa potilaan oireen laatu. Väitöskirjassa esitetyn luokittimen etuna on sen yksinkertainen rakenne, josta johtuen se on helppo tehdä sekä ymmärtää. Toinen etu on luokittimentarkkuus. Luokitin saadaan luokittelemaan useita eri ongelmia hyvin tarkasti. Tämä on tärkeää varsinkin lääketieteen parissa, missä jo pieni tarkkuuden parannus luokittelutuloksessa on erittäin tärkeää. Väitöskirjassa ontutkittu useita eri mittoja, joilla voidaan mitata samankaltaisuutta. Mitoille löytyy myös useita parametreja, joille voidaan etsiä juuri kyseiseen luokitteluongelmaan sopivat arvot. Tämä parametrien optimointi ongelma-alueeseen sopivaksi voidaan suorittaa mm. evoluutionääri- algoritmeja käyttäen. Kyseisessä työssä tähän on käytetty geneettistä algoritmia ja differentiaali-evoluutioalgoritmia. Luokittimen etuna on sen joustavuus. Ongelma-alueelle on helppo vaihtaa similaarisuusmitta, jos kyseinen mitta ei ole sopiva tutkittavaan ongelma-alueeseen. Myös eri mittojen parametrien optimointi voi parantaa tuloksia huomattavasti. Kun käytetään eri esikäsittelymenetelmiä ennen luokittelua, tuloksia pystytään parantamaan.
Resumo:
The purpose of this study was to analyse the nursing student-patient relationship and factors associated with this relationship from the point of view of both students and patients, and to identify factors that predict the type of relationship. The ultimate goal is to improve supervised clinical practicum with a view to supporting students in their reciprocal collaborative relationships with patients, increase their preparedness to meet patients’ health needs, and thus to enhance the quality of patient care. The study was divided into two phases. In the first phase (1999-2005), a literature review concerning the student-patient relationship was conducted (n=104 articles) and semi-structured interviews carried out with nursing students (n=30) and internal medicine patients (n=30). Data analysis was by means of qualitative content analysis and Student-Patient Relationship Scales, which were specially developed for this research. In the second phase (2005-2007), the data were collected by SPR scales among nursing students (n=290) and internal medicine patients (n=242). The data were analysed statistically by SPSS 12.0 software. The results revealed three types of student-patient relationship: a mechanistic relationship focusing on the student’s learning needs; an authoritative relationship focusing on what the student assumes is in the patient’s best interest; and a facilitative relationship focusing on the common good of both student and patient. Students viewed their relationship with patients more often as facilitative and authoritative than mechanistic, while in patients’ assessments the authoritative relationship occurred most frequently and the facilitative relationship least frequently. Furthermore, students’ and patients’ views on their relationships differed significantly. A number of background factors, contextual factors and consequences of the relationship were found to be associated with the type of relationship. In the student data, factors that predicted the type of relationship were age, current year of study and support received in the relationship with patient. The higher the student’s age, the more likely the relationship with the patient was facilitative. Fourth year studies and the support of a person other than a supervisor were significantly associated with an authoritative relationship. Among patients, several factors were found to predict the type of nursing student-patient relationships. Significant factors associated with a facilitative relationship were university-level education, several previous hospitalizations, admission to hospital for a medical problem, experience of caring for an ill family member and patient’s positive perception of atmosphere during collaboration and of student’s personal and professional growth. In patients, positive perceptions of student’s personal and professional attributes and patient’s improved health and a greater commitment to self-care, on the other hand, were significantly associated with an authoritative relationship, whereas positive perceptions of one’s own attributes as a patient were significantly associated with a mechanistic relationship. It is recommended that further research on the student-patient relationship and related factors should focus on questions of content, methodology and education.
Resumo:
Suomessa sähkönjakeluverkkoyhtiöt toimivat verkkovastuualueillaan yksinoikeudella. Verkkovastuualuiden ominaispiirteet voivat olla hyvin erilaiset. Energiamarkkinavirasto valvoo sähkömarkkinalainsäädännön noudattamista jakeluverkkotoiminnassa. Jakeluverkonhaltijat on velvoitettu Energiamarkkinaviraston valvontamallin kautta määrittämään tiettyjen rajoitusten mukaisesti verkkokomponenteillensa sopivimmat teknistaloudelliset pitoajat. Nämä pitoajat vaikuttavat varsinkin verkkoyhtiön tuottomahdollisuuksiin ja asiakkaiden siirtohintoihin. Lisäksi huomioon on otettava jaettavan sähkön laatu, verkon käyttövarmuus sekä vaikutukset ympäristöön ja turvallisuuteen. Pitoaikojen matemaattinen mallintaminen on usein monimutkaista. Teknistaloudellinen pitoaika valitaankin monesti kokemuksen ja harkinnan perusteella. Tärkeimmät reunaehdot jakeluverkkokomponenttien teknistaloudellisten pitoaikojen valinnalle muodostavat verkkovastuualueen sähkönkulutuksen kasvun sekä infrastruktuurin muutoksen nopeudet. Hitaan muutoksen alueilla verkkokomponenttien teknistaloudelliset pitoajat lähenevät teknisiä pitoaikoja, joihin vaikuttavat voimakkaasti verkkovastuualueen maantieteelliset ja ilmastolliset ominaispiirteet. Yhtiöittäin vaihtelevat verkon rakennus- ja ylläpitomenetelmät tulee myös huomioida. Tässä diplomityössä keskitytään pääosin sähkönjakeluverkon komponenttien teknistaloudelliseen pitoaikaan verkon ja verkkovastuualueen ominaispiirteiden kautta. Aluksi määritellään jakeluverkon pitoaika usealla eri tavalla, sekä selvitetään pitoajan merkitystä nykytilanteessa. Lisäksi työn alkuosassa esitellään Energiamarkkinaviraston vuoden 2005 alusta käyttöönotettu jakeluverkkotoiminnan hinnoittelun kohtuullisuuden valvontamalli ja käydään läpi teknistaloudellisen pitoajan merkitys siinä. Sen jälkeen tarkastellaan jakeluverkkokomponenttien ja niiden osien tekniseen pitoaikaan vaikuttavia tekijöitä. Erityisesti puupylväisiin ja niihin liittyviin ajankohtaisiin asioihin kiinnitetään huomiota, koska puupylväät määräävät monesti koko ilmajohtorakenteen uusimisajankohdan. Lisäksi suolakyllästeiselle puupylväälle esitetään yleinen rappeutumismalli ja jakelumuuntajan rappeutumistapahtumaa tutkitaan. Lopuksi tarkastellaan Graninge Kainuu Oy:tä jakeluverkonhaltijana sekä määritetään sen verkkovastuualueelle ominaisia komponenttien teknisiä ja teknistaloudellisia pitoaikoja haastattelujen, tuoreimpien lähteiden, tutkimustulosten, vertailun ja harkinnan avulla.
Resumo:
Tässä diplomityössä oli tavoitteena suunnitella ja toteuttaa verkkoliiketoiminnan tehokkuusmittauksen ohjausvaikutusten analysointijärjestelmä. Verkkoliiketoiminta on monopoliasemassa olevaa liiketoimintaa, jossa ei ole kilpailusta johtuvaa pakotetta pitää liiketoimintaa tehokkaana ja hintoja alhaisina. Tämän vuoksi verkkoliiketoiminnan hinnoittelua ja toiminnan tehokkuutta tulee valvoa viranomaisen toimesta. Tehokkuusmittauksessa käytettäväksi menetelmäksi on valittu DEA-menetelmä (Data Envelopment Analysis). Tässä työssä on esitelty DEA-menetelmän teoreettiset perusteet sekä verkkoliiketoiminnan tehokkuusmittauksessa havaitut ongelmat. Näiden perusteella on määritelty analysointijärjestelmältä vaadittavat ominaisuudet sekä kehitetty kyseinen järjestelmä. Tärkeimmiksi järjestelmän ominaisuuksiksi osoittautuivat herkkyysanalyysin tekeminen ja etenkin sitä kautta suoritettava keskeytysten hinnan laskeminen sekä mahdollisuudet painokertoimien rajoittamiselle. Työn loppuosassa on esitelty järjestelmästä saatavia konkreettisia tuloksia, joiden avulla on pyritty havainnollistamaan järjestelmän käyttömahdollisuuksia.
Resumo:
Luokittuminen erilaisine mekanismeineen aiheuttaa yleisesti ongelmia, kun on kysymyksessä kiintoaineen väliaikainenkin varastointi siilossa. Sitä voidaan vähentää kiintoaineiden, prosessin ja laitesuunnittelun muutoksilla. Tässä työssä tutkittiin mahdollisuuksia vähentää ilmeniitin luokittumista sen jauhatuspiirin ilmakiertoa optimoimalla. Suljetun kuivajauhatuspiirin keskeisimmäksi laitteeksi voitaisiin ajatella siinä oleva luokitin, joka voi olla esim. sykloni. Tässä piirissä tapahtuva kiintoaineen liikkuminen voidaan saada aikaiseksi esim. pneumaattisella kuljetuksella. Ilmeniitin jauhatus tapahtuu suljetussa kuivajauhatuspiirissä, jonka ajavana voimana on siinä oleva ilmakierto. Piirin oleellisia laitteita ovat kuulamylly, luokitin, erotussykloni ja pölykaappi sekä kiertoilma- ja poistoilmapuhaltimet. Ilmakierron optimointia varten suoritettiin kahden vastaavan jauhatuspiirin ainetasemääritykset. Lisäksi määritettiin yhden isomman piirin perustila. Jauhatuspiirien ainetasemäärityksissä määritettiin niiden massa- ja ilmavirrat sekä kiertokuorma ja luokittimen erotusterävyys, kuten myös ilmeniitin hiukkaskokojakaumat. Perustilamittauksissa määritettiin ainoastaan piirin ilmavirrat ja ilmeniitin hiukkaskokojakaumat. Optimointimittauksissa pienennettiin pikkumyllypiirin ilmamäärät vastaamaan kutakuinkin vastaavan toisen piirin määriä. Tällä yritettiin selvittää näiden toisiaan vastaavien piirien ilmamäärien ja varsinkin kiertokuormien eroavuutta. Tämä ilmamäärien pienentäminen ei tuottanut mainittavampaa muutosta piirin ainetaseisiin, joten voitaneen todeta, että piirin ilmamääriä pienentämällä saadaan aikaiseksi säästöjä, lähinnä kiertoilmapuhaltimen tehon alennuksen kautta.