31 resultados para Structured Prediction
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Very preterm birth is a risk for brain injury and abnormal neurodevelopment. While the incidence of cerebral palsy has decreased due to advances in perinatal and neonatal care, the rate of less severe neuromotor problems continues to be high in very prematurely born children. Neonatal brain imaging can aid in identifying children for closer follow-up and in providing parents information on developmental risks. This thesis aimed to study the predictive value of structural brain magnetic resonance imaging (MRI) at term age, serial neonatal cranial ultrasound (cUS), and structured neurological examinations during the longitudinal follow-up for the neurodevelopment of very preterm born children up to 11 years of age as a part of the PIPARI Study (The Development and Functioning of Very Low Birth Weight Infants from Infancy to School Age). A further aim was to describe the associations between regional brain volumes and long-term neuromotor profile. The prospective follow-up comprised of the assessment of neurosensory development at 2 years of corrected age, cognitive development at 5 years of chronological age, and neuromotor development at 11 years of age. Neonatal brain imaging and structured neurological examinations predicted neurodevelopment at all age-points. The combination of neurological examination and brain MRI or cUS improved the predictive value of neonatal brain imaging alone. Decreased brain volumes associated with neuromotor performance. At the age of 11 years, the majority of the very preterm born children had age-appropriate neuromotor development and after-school sporting activities. Long-term clinical follow-up is recommended at least for all very preterm infants with major brain pathologies.
Resumo:
Selostus: Viljelymaiden savespitoisuuden alueellistaminen geostatistiikan ja pistemäisen tiedon avulla
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Superheater corrosion causes vast annual losses for the power companies. With a reliable corrosion prediction method, the plants can be designed accordingly, and knowledge of fuel selection and determination of process conditions may be utilized to minimize superheater corrosion. Growing interest to use recycled fuels creates additional demands for the prediction of corrosion potential. Models depending on corrosion theories will fail, if relations between the inputs and the output are poorly known. A prediction model based on fuzzy logic and an artificial neural network is able to improve its performance as the amount of data increases. The corrosion rate of a superheater material can most reliably be detected with a test done in a test combustor or in a commercial boiler. The steel samples can be located in a special, temperature-controlled probe, and exposed to the corrosive environment for a desired time. These tests give information about the average corrosion potential in that environment. Samples may also be cut from superheaters during shutdowns. The analysis ofsamples taken from probes or superheaters after exposure to corrosive environment is a demanding task: if the corrosive contaminants can be reliably analyzed, the corrosion chemistry can be determined, and an estimate of the material lifetime can be given. In cases where the reason for corrosion is not clear, the determination of the corrosion chemistry and the lifetime estimation is more demanding. In order to provide a laboratory tool for the analysis and prediction, a newapproach was chosen. During this study, the following tools were generated: · Amodel for the prediction of superheater fireside corrosion, based on fuzzy logic and an artificial neural network, build upon a corrosion database developed offuel and bed material analyses, and measured corrosion data. The developed model predicts superheater corrosion with high accuracy at the early stages of a project. · An adaptive corrosion analysis tool based on image analysis, constructedas an expert system. This system utilizes implementation of user-defined algorithms, which allows the development of an artificially intelligent system for thetask. According to the results of the analyses, several new rules were developed for the determination of the degree and type of corrosion. By combining these two tools, a user-friendly expert system for the prediction and analyses of superheater fireside corrosion was developed. This tool may also be used for the minimization of corrosion risks by the design of fluidized bed boilers.
Resumo:
Työssä tutkittiin Andritz-Ahlstrom toimittamien soodakattiloiden lämmönsiirtoa ANITA 2.20- suunnitteluohjelmalla feedback- laskentaa apuna käyttäen. Data laskentaan saatiin kattiloiden takuukokeissa mitatuista arvoista. Mittaukset on suoritettiin Andritz-Ahlstromin henkilökunnan toimesta tehdashenkilökunnan avustuksella. Feedback -laskenta tapahtui mittaustulosten perusteella, joten tiettyä virhettä luonnollisesti esiintyi. Aluksi laskettiin taseet molempien ekojen yli erikseen sekä molemmat yhdessä Excel-taulukkolaskentaohjelmalla. Täältä saatiin oletettu savukaasuvirtaus kattilassa. Tämän jälkeen lämpöpintoja muokattiin todellisuutta vastaaviksi yleislikaisuuskerrointa muuttamalla (overall fouling factor). Kertoimet ovat liikkuivat noin 0.4 ja 1.6 välillä riipuen kattilan tyypistä ja ANITAn oletuksesta lämpöpintojen likaisuudelle. Havaittin että yhtä varsinaista syytä lämpöpintojen eroavaisuuteen oletetusta ei saatu. Syitä toiminnan poikkeamiseen oli monia. Mm. etukammion koolla havaittiin olevan suurtakin vaikutusta tulistimien, etenkin savukaasuvirrassa ensimmäisen tulistimen toimintaan. Yleisesti todettiin muiden tulistimien vastaavan oletettua toimintaa. Keittopinnan ja ekonomiserien toimintaa tutkittiin hivenen suppeammin ja havaittiin niiden toimivan huomattavasti stabiilimmin kuin tulistimien. Likaisuus kertoimet oletetusta vaihtelivat noin ±20 %.
Resumo:
The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.
Resumo:
The study is related to lossless compression of greyscale images. The goal of the study was to combine two techniques of lossless image compression, i.e. Integer Wavelet Transform and Differential Pulse Code Modulation to attain better compression ratio. This is an experimental study, where we implemented Integer Wavelet Transform, Differential Pulse Code Modulation and an optimized predictor model using Genetic Algorithm. This study gives encouraging results for greyscale images. We achieved a better compression ration in term of entropy for experiments involving quadrant of transformed image and using optimized predictor coefficients from Genetic Algorithm. In an other set of experiments involving whole image, results are encouraging and opens up many areas for further research work like implementing Integer Wavelet Transform on multiple levels and finding optimized predictor at local levels.