3 resultados para Stroke volume variation
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
The Department of French Studies of the University of Turku (Finland) organized an International Bilingual Conference on Crosscultural and Crosslinguistic Perspectives on Academic Discourse from 2022 May 2005. The event hosted specialists on Academic Discourse from Belgium, Finland, France, Germany, Italy, Norway, Spain, and the USA. This book is the first volume in our series of publications on Academic Discourse (AD hereafter). The following pages are composed of selected papers from the conference and focus on different aspects and analytical frameworks of Academic Discourse. One of the motivations behind organizing the conference was to examine and expand research on AD in different languages. Another one was to question to what extent academic genres are culturebound and language specific or primarily field or domain specific. The research carried out on AD has been mainly concerned with the use of English in different academic settings for a long time now – mainly written contexts – and at the expense of other languages. Alternatively the academic genre conventions of English and English speaking world have served as a basis for comparison with other languages and cultures. We consider this first volume to be a strong contribution to the spreading out of researches based on other languages than English in AD, namely Finnish, French, Italian, Norwegian and Romanian in this book. All the following articles have a strong link with the French language: either French is constitutive of the AD corpora under examination or the article was written in French. The structure of the book suggests and provides evidence that the concept of AD is understood and tackled to varying degrees by different scholars. Our first volume opens up the discussion on what AD is and backs dissemination, overlapping and expansion of current research questions and methodologies. The book is divided into three parts and contains four articles in English and six articles in French. The papers in part one and part two cover what we call the prototypical genre of written AD, i.e. the research article. Part one follows up on issues linked to the 13 Research Article (RA hereafter). Kjersti Fløttum asks wether a typical RA exists and concentrates on authors’ voices in RA (self and other dimensions), whereas Didriksen and Gjesdal’s article focuses on individual variation of the author’s voice in RA. The last article in this section is by Nadine Rentel and deals with evaluation in the writing of RA. Part two concentrates on the teaching and learning of AD within foreign language learning, another more or less canonical genre of AD. Two aspects of writing are covered in the first two articles: foreign students’ representations on rhetorical traditions (Hidden) and a contrastive assessment of written exercices in French and Finnish in Higher Education (Suzanne). The last contribution in this section on AD moves away from traditional written forms and looks at how argumentation is constructed in students’ oral presentations (Dervin and Fauveau). The last part of the book continues the extension by featuring four articles written in French exploring institutional and scientific discourses. Institutional discourses under scrutiny include the European Bologna Process (Galatanu) and Romanian reform texts (Moilanen). As for scientific discourses, the next paper in this section deconstructs an ideological discourse on the didactics of French as a foreign language (Pescheux). Finally, the last paper in part three reflects on varied forms of AD at university (Defays). We hope that this book will add some fuel to continue discussing diverse forms of and approches to AD – in different languages and voices! No need to say that with the current upsurge in academic mobility, reflecting on crosscultural and crosslinguistic AD has just but started.
Resumo:
Novel word learning has been rarely studied in people with aphasia (PWA), although it can provide a relatively pure measure of their learning potential, and thereby contribute to the development of effective aphasia treatment methods. The main aim of the present thesis was to explore the capacity of PWA for associative learning of word–referent pairings and cognitive-linguistic factors related to it. More specifically, the thesis examined learning and long-term maintenance of the learned pairings, the role of lexical-semantic abilities in learning as well as acquisition of phonological versus semantic information in associative novel word learning. Furthermore, the effect of modality on associative novel word learning and the neural underpinnings of successful learning were explored. The learning experiments utilized the Ancient Farming Equipment (AFE) paradigm that employs drawings of unfamiliar referents and their unfamiliar names. Case studies of Finnishand English-speaking people with chronic aphasia (n = 6) were conducted in the investigation. The learning results of PWA were compared to those of healthy control participants, and active production of the novel words and their semantic definitions was used as learning outcome measures. PWA learned novel word–novel referent pairings, but the variation between individuals was very wide, from more modest outcomes (Studies I–II) up to levels on a par with healthy individuals (Studies III–IV). In incidental learning of semantic definitions, none of the PWA reached the performance level of the healthy control participants. Some PWA maintained part of the learning outcomes up to months post-training, and one individual showed full maintenance of the novel words at six months post-training (Study IV). Intact lexical-semantic processing skills promoted learning in PWA (Studies I–II) but poor phonological short-term memory capacities did not rule out novel word learning. In two PWA with successful learning and long-term maintenance of novel word–novel referent pairings, learning relied on orthographic input while auditory input led to significantly inferior learning outcomes (Studies III–IV). In one of these individuals, this previously undetected modalityspecific learning ability was successfully translated into training with familiar but inaccessible everyday words (Study IV). Functional magnetic resonance imaging revealed that this individual had a disconnected dorsal speech processing pathway in the left hemisphere, but a right-hemispheric neural network mediated successful novel word learning via reading. Finally, the results of Study III suggested that the cognitive-linguistic profile may not always predict the optimal learning channel for an individual with aphasia. Small-scale learning probes seem therefore useful in revealing functional learning channels in post-stroke aphasia.