8 resultados para Stress test

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kolmen eri hitsausliitoksen väsymisikä arvio on analysoitu monimuuttuja regressio analyysin avulla. Regression perustana on laaja S-N tietokanta joka on kerätty kirjallisuudesta. Tarkastellut liitokset ovat tasalevy liitos, krusiformi liitos ja pitkittäisripa levyssä. Muuttujina ovat jännitysvaihtelu, kuormitetun levyn paksuus ja kuormitus tapa. Paksuus effekti on käsitelty uudelleen kaikkia kolmea liitosta ajatellen. Uudelleen käsittelyn avulla on varmistettu paksuus effektin olemassa olo ennen monimuuttuja regressioon siirtymistä. Lineaariset väsymisikä yhtalöt on ajettu kolmelle hitsausliitokselle ottaen huomioon kuormitetun levyn paksuus sekä kuormitus tapa. Väsymisikä yhtalöitä on verrattu ja keskusteltu testitulosten valossa, jotka on kerätty kirjallisuudesta. Neljä tutkimustaon tehty kerättyjen väsymistestien joukosta ja erilaisia väsymisikä arvio metodeja on käytetty väsymisiän arviointiin. Tuloksia on tarkasteltu ja niistä keskusteltu oikeiden testien valossa. Tutkimuksissa on katsottu 2mm ja 6mm symmetristäpitkittäisripaa levyssä, 12.7mm epäsymmetristä pitkittäisripaa, 38mm symmetristä pitkittäisripaa vääntökuormituksessa ja 25mm/38mm kuorman kantavaa krusiformi liitosta vääntökuormituksessa. Mallinnus on tehty niin lähelle testi liitosta kuin mahdollista. Väsymisikä arviointi metodit sisältävät hot-spot metodin jossa hot-spot jännitys on laskettu kahta lineaarista ja epälineaarista ekstrapolointiakäyttäen sekä paksuuden läpi integrointia käyttäen. Lovijännitys ja murtumismekaniikka metodeja on käytetty krusiformi liitosta laskiessa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fatigue life assessment of weldedstructures is commonly based on the nominal stress method, but more flexible and accurate methods have been introduced. In general, the assessment accuracy is improved as more localized information about the weld is incorporated. The structural hot spot stress method includes the influence of macro geometric effects and structural discontinuities on the design stress but excludes the local features of the weld. In this thesis, the limitations of the structural hot spot stress method are discussed and a modified structural stress method with improved accuracy is developed and verified for selected welded details. The fatigue life of structures in the as-welded state consists mainly of crack growth from pre-existing cracks or defects. Crack growth rate depends on crack geometry and the stress state on the crack face plane. This means that the stress level and shape of the stress distribution in the assumed crack path governs thetotal fatigue life. In many structural details the stress distribution is similar and adequate fatigue life estimates can be obtained just by adjusting the stress level based on a single stress value, i.e., the structural hot spot stress. There are, however, cases for which the structural stress approach is less appropriate because the stress distribution differs significantly from the more common cases. Plate edge attachments and plates on elastic foundations are some examples of structures with this type of stress distribution. The importance of fillet weld size and weld load variation on the stress distribution is another central topic in this thesis. Structural hot spot stress determination is generally based on a procedure that involves extrapolation of plate surface stresses. Other possibilities for determining the structural hot spot stress is to extrapolate stresses through the thickness at the weld toe or to use Dong's method which includes through-thickness extrapolation at some distance from the weld toe. Both of these latter methods are less sensitive to the FE mesh used. Structural stress based on surface extrapolation is sensitive to the extrapolation points selected and to the FE mesh used near these points. Rules for proper meshing, however, are well defined and not difficult to apply. To improve the accuracy of the traditional structural hot spot stress, a multi-linear stress distribution is introduced. The magnitude of the weld toe stress after linearization is dependent on the weld size, weld load and plate thickness. Simple equations have been derived by comparing assessment results based on the local linear stress distribution and LEFM based calculations. The proposed method is called the modified structural stress method (MSHS) since the structural hot spot stress (SHS) value is corrected using information on weld size andweld load. The correction procedure is verified using fatigue test results found in the literature. Also, a test case was conducted comparing the proposed method with other local fatigue assessment methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A positive association has been suggested to exist between physical activity and psychological wellbeing. However, the association between physical fitness, especially muscle fitness and psychological wellbeing, has not yet been fully elucidated. Aims: The objective of the present thesis was to assess the relationship between physical activity and physical fitness with stress symptoms, mental resources and workability among young men and working adults. Subjects and methods: Volunteers of young men (n=831, mean age 25-y (±4.0)), underwent a cardiorespiratory (CRF) and muscle fitness (MFI) test and completed leisure time physical activity (LTPA) and Occupational Stress Questionnaires (OSQ). The participants were divided into tertiles according to LTPA, CRF and MFI. A 12-month exercise intervention evaluated 371 working adults (exercise group, n=338, mean age 45-y (±8.8)); control group, n=33, mean age 41-y (±6.9)).The exercise group underwent a 12-month exercise program followed by a 12-month follow-up. The OSQ, Workability Index (WAI) and CRF were evaluated at baseline and at 4, 8, 12 and 24 months. Results: Physically inactive subjects reported more stress and less available mental resources than the subjects who reported high physical activity levels. Improved physical fitness was associated with less stress and more mental resources among normal weight men, but not in overweight men. After a 12-month exercise intervention, employees in the exercise group increased their physical activity, improved workability, decreased stress symptoms and improved their physical fitness and mental resources. After the follow-up year, workability and stress were improved compared to baseline. Conclusions: In this thesis, good physical fitness was associated with improved psychological wellbeing among young men and working adults.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this work was to calibrate the material properties including strength and strain values for different material zones of ultra-high strength steel (UHSS) welded joints under monotonic static loading. The UHSS is heat sensitive and softens by heat due to welding, the affected zone is heat affected zone (HAZ). In this regard, cylindrical specimens were cut out from welded joints of Strenx® 960 MC and Strenx® Tube 960 MH, were examined by tensile test. The hardness values of specimens’ cross section were measured. Using correlations between hardness and strength, initial material properties were obtained. The same size specimen with different zones of material same as real specimen were created and defined in finite element method (FEM) software with commercial brand Abaqus 6.14-1. The loading and boundary conditions were defined considering tensile test values. Using initial material properties made of hardness-strength correlations (true stress-strain values) as Abaqus main input, FEM is utilized to simulate the tensile test process. By comparing FEM Abaqus results with measured results of tensile test, initial material properties will be revised and reused as software input to be fully calibrated in such a way that FEM results and tensile test results deviate minimum. Two type of different S960 were used including 960 MC plates, and structural hollow section 960 MH X-joint. The joint is welded by BöhlerTM X96 filler material. In welded joints, typically the following zones appear: Weld (WEL), Heat affected zone (HAZ) coarse grained (HCG) and fine grained (HFG), annealed zone, and base material (BaM). Results showed that: The HAZ zone is softened due to heat input while welding. For all the specimens, the softened zone’s strength is decreased and makes it a weakest zone where fracture happens while loading. Stress concentration of a notched specimen can represent the properties of notched zone. The load-displacement diagram from FEM modeling matches with the experiments by the calibrated material properties by compromising two correlations of hardness and strength.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stress is a phenomenon that on some level affects everyone’s lives on a daily basis. The autonomic nervous system controls the varying levels of stress at any given time. The responses of the autonomic nervous system adjust the body to cope with changing external and internal conditions. During high-stress situations the body is forced into a state of heightened alertness, which passes when the stressor is removed. The stressor can be any external or internal event that causes the body to respond. Stress is a very versatile phenomenon that can be both a cause and an indicator of other medical conditions, for example cardiovascular disease. Stress detection can therefore be helpful in identifying these conditions and monitoring the overall emotional state of a person. Electrodermal activity (EDA) is one of the most easily implemented ways to monitor the activity of the autonomic nervous system. EDA describes changes occurring in the various electrical properties of the skin, including skin conductivity and resistance. Increased emotional sweating has been proven to be one possible indication of stress. On the surface of the skin, increased sweating translates to increased skin conductivity, which can be observed through EDA measurements. This makes electrodermal activity a very useful tool in a wide range of applications where it is desirable to observe changes in a person’s stress level. EDA can be recorded by using specialized body sensors placed on specific locations on the body. Most commonly used recording sites are the palms of the hands due to the high sweat gland density on those areas. Measurement is done using at least two electrodes attached to the skin, and recording the electrical conductance between them. This thesis implements a prototype of a wireless EDA measurement system. The feasibility of the prototype is also verified with a small group of test subjects. EDA was recorded from the subjects while they were playing a game of Tetris. The goal was to observe variations in the measured EDA that would indicate changes in the subjects’ stress levels during the game. The analysis of the obtained measurement results confirmed the connection between stress and recorded EDA. During the game, random occurrences of lowered skin resistance were clearly observable, which indicates points in the game where the player felt more anxious. A wireless measurement system has the potential of offering more flexible and comfortable long-term measuring of EDA, and could be utilized in a wide range of applications.