7 resultados para Strain gradients
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Pertussis or whooping cough is a highly contagious vaccine-preventable disease of the human respiratory tract caused by the Bordetella pertussis bacteria. In Finland, pertussis vaccinations were started in 1952 leading to a dramatic decrease in the morbidity and mortality. In the late 1990s, the incidence of pertussis increased despite the high vaccination coverage. Strain variation has been connected to the re-emergence of pertussis in countries with long history of pertussis vaccination. In 2005, the pertussis vaccine and the vaccination schedule were changed in Finland. The molecular epidemiology and the strain variation of the B. pertussis isolates were examined in Finland and in countries with similar (France) and different (Sweden) vaccination history. Continuous evolution of the B. pertussis population in Finland was observed since the 1950s, and the recently circulating isolates were antigenically different from the vaccine strains. Comparison of the circulating isolates from Finland, France and Sweden did not refer to significant differences. Certain type of strains noticed in France already in 1994 mainly caused the recent epidemics in Sweden (1999) and in Finland (2003-4). On several occasions, a new type of strains first appeared in Sweden and some years later in Finland. The B. pertussis isolates from the infants were shown to be similar to those from the other age groups. It is suggested that the strains originate from the same reservoir among adolescents and adults. The strain variation does not seem to have a major effect on the morbidity among recently vaccinated individuals, but it might play a role among those who are in the waning phase of immunity. The incidence of pertussis in Finland has remained low since the change of the vaccination programme. This might be related to the epidemic nature of pertussis and the near future will show the real effectiveness of the new vaccination programme. At present, many infants are infected because they are too young to be immunised with the current schedule. New strategies or vaccines are needed to protect those who are the most vulnerable.
Resumo:
In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.
Resumo:
Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.
Resumo:
Cyanobacteria are unicellular, non-nitrogen-fixing prokaryotes, which perform photosynthesis similarly as higher plants. The cyanobacterium Synechocystis sp. strain PCC 6803 is used as a model organism in photosynthesis research. My research described herein aims at understanding the function of the photosynthetic machinery and how it responds to changes in the environment. Detailed knowledge of the regulation of photosynthesis in cyanobacteria can be utilized for biotechnological purposes, for example in the harnessing of solar energy for biofuel production. In photosynthesis, iron participates in electron transfer. Here, we focused on iron transport in Synechocystis sp. strain PCC 6803 and particularly on the environmental regulation of the genes encoding the FutA2BC ferric iron transporter, which belongs to the ABC transporter family. A homology model built for the ATP-binding subunit FutC indicates that it has a functional ATPbinding site as well as conserved interactions with the channel-forming subunit FutB in the transporter complex. Polyamines are important for the cell proliferation, differentiation and apoptosis in prokaryotic and eukaryotic cells. In plants, polyamines have special roles in stress response and in plant survival. The polyamine metabolism in cyanobacteria in response to environmental stress is of interest in research on stress tolerance of higher plants. In this thesis, the potd gene encoding an polyamine transporter subunit from Synechocystis sp. strain PCC 6803 was characterized for the first time. A homology model built for PotD protein indicated that it has capability of binding polyamines, with the preference for spermidine. Furthermore, in order to investigate the structural features of the substrate specificity, polyamines were docked into the binding site. Spermidine was positioned very similarly in Synechocystis PotD as in the template structure and had most favorable interactions of the docked polyamines. Based on the homology model, experimental work was conducted, which confirmed the binding preference. Flavodiiron proteins (Flv) are enzymes, which protect the cell against toxicity of oxygen and/or nitric oxide by reduction. In this thesis, we present a novel type of photoprotection mechanism in cyanobacteria by the heterodimer of Flv2/Flv4. The constructed homology model of Flv2/Flv4 suggests a functional heterodimer capable of rapid electron transfer. The unknown protein sll0218, encoded by the flv2-flv4 operon, is assumed to facilitate the interaction of the Flv2/Flv4 heterodimer and energy transfer between the phycobilisome and PSII. Flv2/Flv4 provides an alternative electron transfer pathway and functions as an electron sink in PSII electron transfer.
Resumo:
Macroalgae are the main primary producers of the temperate rocky shores providing a three-dimensional habitat, food and nursery grounds for many other species. During the past decades, the state of the coastal waters has deteriorated due to increasing human pressures, resulting in dramatic changes in coastal ecosystems, including macroalgal communities. To reverse the deterioration of the European seas, the EU has adopted the Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD), aiming at improved status of the coastal waters and the marine environment. Further, the Habitats Directive (HD) calls for the protection of important habitats and species (many of which are marine) and the Maritime Spatial Planning Directive for sustainability in the use of resources and human activities at sea and by the coasts. To efficiently protect important marine habitats and communities, we need knowledge on their spatial distribution. Ecological knowledge is also needed to assess the status of the marine areas by involving biological indicators, as required by the WFD and the MSFD; knowledge on how biota changes with human-induced pressures is essential, but to reliably assess change, we need also to know how biotic communities vary over natural environmental gradients. This is especially important in sea areas such as the Baltic Sea, where the natural environmental gradients create substantial differences in biota between areas. In this thesis, I studied the variation occurring in macroalgal communities across the environmental gradients of the northern Baltic Sea, including eutrophication induced changes. The aim was to produce knowledge to support the reliable use of macroalgae as indicators of ecological status of the marine areas and to test practical metrics that could potentially be used in status assessments. Further, the aim was to develop a methodology for mapping the HD Annex I habitat reefs, using the best available data on geology and bathymetry. The results showed that the large-scale variation in the macroalgal community composition of the northern Baltic Sea is largely driven by salinity and exposure. Exposure is important also on smaller spatial scales, affecting species occurrence, community structure and depth penetration of algae. Consequently, the natural variability complicates the use of macroalgae as indicators of human-induced changes. Of the studied indicators, the number of perennial algal species, the perennial cover, the fraction of annual algae, and the lower limit of occurrence of red and brown perennial algae showed potential as usable indicators of ecological status. However, the cumulated cover of algae, commonly used as an indicator in the fully marine environments, showed low responses to eutrophication in the area. Although the mere occurrence of perennial algae did not show clear indicator potential, a distinct discrepancy in the occurrence of bladderwrack, Fucus vesiculosus, was found between two areas with differing eutrophication history, the Bothnian Sea and the Archipelago Sea. The absence of Fucus from many potential sites in the outer Archipelago Sea is likely due to its inability to recover from its disappearance from the area 30-40 years ago, highlighting the importance of past events in macroalgal occurrence. The methodology presented for mapping the potential distribution and the ecological value of reefs showed, that relatively high accuracy in mapping can be achieved by combining existing available data, and the maps produced serve as valuable background information for more detailed surveys. Taken together, the results of the theses contribute significantly to the knowledge on macroalgal communities of the northern Baltic Sea that can be directly applied in various management contexts.