13 resultados para Shallow Flow Expansion
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The steam turbines play a significant role in global power generation. Especially, research on low pressure (LP) steam turbine stages is of special importance for steam turbine man- ufactures, vendors, power plant owners and the scientific community due to their lower efficiency than the high pressure steam turbine stages. Because of condensation, the last stages of LP turbine experience irreversible thermodynamic losses, aerodynamic losses and erosion in turbine blades. Additionally, an LP steam turbine requires maintenance due to moisture generation, and therefore, it is also affecting on the turbine reliability. Therefore, the design of energy efficient LP steam turbines requires a comprehensive analysis of condensation phenomena and corresponding losses occurring in the steam tur- bine either by experiments or with numerical simulations. The aim of the present work is to apply computational fluid dynamics (CFD) to enhance the existing knowledge and understanding of condensing steam flows and loss mechanisms that occur due to the irre- versible heat and mass transfer during the condensation process in an LP steam turbine. Throughout this work, two commercial CFD codes were used to model non-equilibrium condensing steam flows. The Eulerian-Eulerian approach was utilised in which the mix- ture of vapour and liquid phases was solved by Reynolds-averaged Navier-Stokes equa- tions. The nucleation process was modelled with the classical nucleation theory, and two different droplet growth models were used to predict the droplet growth rate. The flow turbulence was solved by employing the standard k-ε and the shear stress transport k-ω turbulence models. Further, both models were modified and implemented in the CFD codes. The thermodynamic properties of vapour and liquid phases were evaluated with real gas models. In this thesis, various topics, namely the influence of real gas properties, turbulence mod- elling, unsteadiness and the blade trailing edge shape on wet-steam flows, are studied with different convergent-divergent nozzles, turbine stator cascade and 3D turbine stator-rotor stage. The simulated results of this study were evaluated and discussed together with the available experimental data in the literature. The grid independence study revealed that an adequate grid size is required to capture correct trends of condensation phenomena in LP turbine flows. The study shows that accurate real gas properties are important for the precise modelling of non-equilibrium condensing steam flows. The turbulence modelling revealed that the flow expansion and subsequently the rate of formation of liquid droplet nuclei and its growth process were affected by the turbulence modelling. The losses were rather sensitive to turbulence modelling as well. Based on the presented results, it could be observed that the correct computational prediction of wet-steam flows in the LP turbine requires the turbulence to be modelled accurately. The trailing edge shape of the LP turbine blades influenced the liquid droplet formulation, distribution and sizes, and loss generation. The study shows that the semicircular trailing edge shape predicted the smallest droplet sizes. The square trailing edge shape estimated greater losses. The analysis of steady and unsteady calculations of wet-steam flow exhibited that in unsteady simulations, the interaction of wakes in the rotor blade row affected the flow field. The flow unsteadiness influenced the nucleation and droplet growth processes due to the fluctuation in the Wilson point.
Resumo:
The bedrock of old crystalline cratons is characteristically saturated with brittle structures formed during successive superimposed episodes of deformation and under varying stress regimes. As a result, the crust effectively deforms through the reactivation of pre-existing structures rather than by through the activation, or generation, of new ones, and is said to be in a state of 'structural maturity'. By combining data from Olkiluoto Island, southwestern Finland, which has been investigated as the potential site of a deep geological repository for high-level nuclear waste, with observations from southern Sweden, it can be concluded that the southern part of the Svecofennian shield had already attained structural maturity during the Mesoproterozoic era. This indicates that the phase of activation of the crust, i.e. the time interval during which new fractures were generated, was brief in comparison to the subsequent reactivation phase. Structural maturity of the bedrock was also attained relatively rapidly in Namaqualand, western South Africa, after the formation of first brittle structures during Neoproterozoic time. Subsequent brittle deformation in Namaqualand was controlled by the reactivation of pre-existing strike-slip faults.In such settings, seismic events are likely to occur through reactivation of pre-existing zones that are favourably oriented with respect to prevailing stresses. In Namaqualand, this is shown for present day seismicity by slip tendency analysis, and at Olkiluoto, for a Neoproterozoic earthquake reactivating a Mesoproterozoic fault. By combining detailed field observations with the results of paleostress inversions and relative and absolute time constraints, seven distinctm superimposed paleostress regimes have been recognized in the Olkiluoto region. From oldest to youngest these are: (1) NW-SE to NNW-SSE transpression, which prevailed soon after 1.75 Ga, when the crust had sufficiently cooled down to allow brittle deformation to occur. During this phase conjugate NNW-SSE and NE-SW striking strike-slip faults were active simultaneous with reactivation of SE-dipping low-angle shear zones and foliation planes. This was followed by (2) N-S to NE-SW transpression, which caused partial reactivation of structures formed in the first event; (3) NW-SE extension during the Gothian orogeny and at the time of rapakivi magmatism and intrusion of diabase dikes; (4) NE-SW transtension that occurred between 1.60 and 1.30 Ga and which also formed the NW-SE-trending Satakunta graben located some 20 km north of Olkiluoto. Greisen-type veins also formed during this phase. (5) NE-SW compression that postdates both the formation of the 1.56 Ga rapakivi granites and 1.27 Ga olivine diabases of the region; (6) E-W transpression during the early stages of the Mesoproterozoic Sveconorwegian orogeny and which also predated (7) almost coaxial E-W extension attributed to the collapse of the Sveconorwegian orogeny. The kinematic analysis of fracture systems in crystalline bedrock also provides a robust framework for evaluating fluid-rock interaction in the brittle regime; this is essential in assessment of bedrock integrity for numerous geo-engineering applications, including groundwater management, transient or permanent CO2 storage and site investigations for permanent waste disposal. Investigations at Olkiluoto revealed that fluid flow along fractures is coupled with low normal tractions due to in-situ stresses and thus deviates from the generally accepted critically stressed fracture concept, where fluid flow is concentrated on fractures on the verge of failure. The difference is linked to the shallow conditions of Olkiluoto - due to the low differential stresses inherent at shallow depths, fracture activation and fluid flow is controlled by dilation due to low normal tractions. At deeper settings, however, fluid flow is controlled by fracture criticality caused by large differential stress, which drives shear deformation instead of dilation.
Resumo:
Selostus: Valkuaistäydennyksen vaikutus lypsylehmän pötsistä virtaavan liukoisen rehuperäisen typen pitoisuuteen ja määrään sisärehuruokinnalla
Resumo:
The suitable timing of capacity investments is a remarkable issue especially in capital intensive industries. Despite its importance, fairly few studies have been published on the topic. In the present study models for the timing of capacity change in capital intensive industry are developed. The study considers mainly the optimal timing of single capacity changes. The review of earlier research describes connections between cost, capacity and timing literature, and empirical examples are used to describe the starting point of the study and to test the developed models. The study includes four models, which describe the timing question from different perspectives. The first model, which minimizes unit costs, has been built for capacity expansion and replacement situations. It is shown that the optimal timing of an investment can be presented with the capacity and cost advantage ratios. After the unit cost minimization model the view is extended to the direction of profit maximization. The second model states that early investments are preferable if the change of fixed costs is small compared to the change of the contribution margin. The third model is a numerical discounted cash flow model, which emphasizes the roles of start-up time, capacity utilization rate and value of waiting as drivers of the profitable timing of a project. The last model expands the view from project level to company level and connects the flexibility of assets and cost structures to the timing problem. The main results of the research are the solutions of the models and analysis or simulations done with the models. The relevance and applicability of the results are verified by evaluating the logic of the models and by numerical cases.
Resumo:
Granular flow phenomena are frequently encountered in the design of process and industrial plants in the traditional fields of the chemical, nuclear and oil industries as well as in other activities such as food and materials handling. Multi-phase flow is one important branch of the granular flow. Granular materials have unusual kinds of behavior compared to normal materials, either solids or fluids. Although some of the characteristics are still not well-known yet, one thing is confirmed: the particle-particle interaction plays a key role in the dynamics of granular materials, especially for dense granular materials. At the beginning of this thesis, detailed illustration of developing two models for describing the interaction based on the results of finite-element simulation, dimension analysis and numerical simulation is presented. The first model is used to describing the normal collision of viscoelastic particles. Based on some existent models, more parameters are added to this model, which make the model predict the experimental results more accurately. The second model is used for oblique collision, which include the effects from tangential velocity, angular velocity and surface friction based on Coulomb's law. The theoretical predictions of this model are in agreement with those by finite-element simulation. I n the latter chapters of this thesis, the models are used to predict industrial granular flow and the agreement between the simulations and experiments also shows the validation of the new model. The first case presents the simulation of granular flow passing over a circular obstacle. The simulations successfully predict the existence of a parabolic steady layer and show how the characteristics of the particles, such as coefficients of restitution and surface friction affect the separation results. The second case is a spinning container filled with granular material. Employing the previous models, the simulation could also reproduce experimentally observed phenomena, such as a depression in the center of a high frequency rotation. The third application is about gas-solid mixed flow in a vertically vibrated device. Gas phase motion is added to coherence with the particle motion. The governing equations of the gas phase are solved by using the Large eddy simulation (LES) and particle motion is predicted by using the Lagrangian method. The simulation predicted some pattern formation reported by experiment.
Resumo:
This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.
Resumo:
Centrifugal compressors are widely used for example in process industry, oil and gas industry, in small gas turbines and turbochargers. In order to achieve lower consumption of energy and operation costs the efficiency of the compressor needs to be improve. In the present work different pinches and low solidity vaned diffusers were utilized in order to improve the efficiency of a medium size centrifugal compressor. In this study, pinch means the decrement of the diffuser flow passage height. First different geometries were analyzed using computational fluid dynamics. The flow solver Finflo was used to solve the flow field. Finflo is a Navier-Stokes solver. The solver is capable to solve compressible, incompressible, steady and unsteady flow fields. Chien's k-e turbulence model was used. One of the numerically investigated pinched diffuser and one low solidity vaned diffuser were studied experimentally. The overall performance of the compressor and the static pressure distribution before and after the diffuser were measured. The flow entering and leaving the diffuser was measured using a three-hole Cobra-probe and Kiel-probes. The pinch and the low solidity vaned diffuser increased the efficiency of the compressor. Highest isentropic efficiency increment obtained was 3\% of the design isentropic efficiency of the original geometry. It was noticed in the numerical results that the pinch made to the hub and the shroud wall was most beneficial to the operation of the compressor. Also the pinch made to the hub was better than the pinchmade to the shroud. The pinch did not affect the operation range of the compressor, but the low solidity vaned diffuser slightly decreased the operation range.The unsteady phenomena in the vaneless diffuser were studied experimentally andnumerically. The unsteady static pressure was measured at the diffuser inlet and outlet, and time-accurate numerical simulation was conducted. The unsteady static pressure showed that most of the pressure variations lay at the passing frequency of every second blade. The pressure variations did not vanish in the diffuser and were visible at the diffuser outlet. However, the amplitude of the pressure variations decreased in the diffuser. The time-accurate calculations showed quite a good agreement with the measured data. Agreement was very good at the design operation point, even though the computational grid was not dense enough inthe volute and in the exit cone. The time-accurate calculation over-predicted the amplitude of the pressure variations at high flow.
Resumo:
Diplomityön tavoitteena oli tarkastella numeerisen virtauslaskennan avulla virtaukseen liittyviä ilmiöitä ja kaasun dispersiota. Diplomityön sisältö on jaettu viiteen osaan; johdantoon, teoriaan, katsaukseen virtauksen mallinnukseen huokoisessa materiaalissa liittyviin tutkimusselvityksiin, numeeriseen mallinnukseen sekä tulosten esittämiseen ja johtopäätöksiin. Diplomityön alussa kiinnitettiin huomiota erilaisiin kokeellisiin, numeerisiin ja teoreettisiin mallinnusmenetelmiin, joilla voidaan mallintaa virtausta huokoisessa materiaalissa. Kirjallisuusosassa tehtiin katsaus aikaisemmin julkaistuihin puoliempiirisiin ja empiirisiin tutkimusselvityksiin, jotka liittyvät huokoisen materiaalin aiheuttamaan painehäviöön. Numeerisessa virtauslaskenta osassa rakennettiin ja esitettiin huokoista materiaalia kuvaavat numeeriset mallit käyttäen kaupallista FLUENT -ohjelmistoa. Työn lopussa arvioitiin teorian, numeerisen virtauslaskennan ja kokeellisten tutkimusselvitysten tuloksia. Kolmiulotteisen huokoisen materiaalinnumeerisessa mallinnuksesta saadut tulokset vaikuttivat lupaavilta. Näiden tulosten perusteella tehtiin suosituksia ajatellen tulevaa virtauksen mallinnusta huokoisessa materiaalissa. Osa tässä diplomityössä esitetyistä tuloksista tullaan esittämään 55. Kanadan Kemiantekniikan konferenssissa Torontossa 1619 Lokakuussa 2005. ASME :n kansainvälisessä tekniikan alan julkaisussa. Työ on hyväksytty esitettäväksi esitettäväksi laskennallisen virtausmekaniikan (CFD) aihealueessa 'Peruskäsitteet'. Lisäksi työn yksityiskohtaiset tulokset tullaan lähettämään myös CES:n julkaisuun.
Resumo:
Tässä työssä on käytetty VTT:n ja Fortumin kehittämääAPROS simulaatio-ohjelmistoa vesi-ilma -täytteisen paineakun käyttäytymisen tutkimiseen. Tavoitteena oli tarkastella APROSin paineakkumallin käyttäytymistä alhaisessa lämpötilassa käyttäen 6-yhtälömallia sekä rakentaa vaihtoehtoiseksi laskentamenetelmäksi kaksi analyyttistä laskentamallia korvaamaan APROSin sisäinen laskenta. Kyseiset analyyttiset mallit ovat isentrooppinen ja isoterminen ja ne on rakennettu kokonaan käyttäen APROSin omia moduuleja. Työ sisältää APROSin version 5.06 sekä työn aikana kehitetyn kehitysversion vertailut eri alkulämpötiloista alkaneissa paisunnoissa, vertailun Pactelin purkaus¬kokeesta saadulla massavirralla sekä osion, jossa analyyttiset mallit on yhdistetty kokonaiseen Pactelin APROS-malliin. Myös purkauksen kulkeutumista primääripiirissä on tarkasteltu. Simulaatiot vahvistavat, että versiolla 5.06 on vaikeuksia paineen laskennassa, kun paisunnan alkulämpötila on alle 30 ºC. Kehitysversiossa painekäyttäytyminen on selvästi parantunut, mutta versio kärsii ongelmista, jotka liittyvät kaasun lämpötilan painumiseen APROSin sisäisten rajoitusten alapuolelleja tätä kautta ongelmiin materiaali¬ominaisuuksien ennustamisessa. Tämän johdosta APROSin kehitysversio päätyy erilaisiin tuloksiin myös tilanteissa, joissa alkuperäinen 5.06 ei kärsi alhaisen lämpötilan ongelmista. Analyyttisistä malleista isentrooppinen malli päätyy antamaan säännönmukaisesti muita malleja ja versioita alempia paineita. Isoterminen malli sen sijaan näyttää päätyvän version 5.06 kanssa melko samankaltaisiin tuloksiin. On kuitenkin muistettava, että kummatkin analyyttiset mallit olettavat kaasun olevan kuivaa ja jättävät massasiirron faasien välillä kokonaan huomiotta.
Resumo:
Numerical computation of a viscid heat-conducting transonic flow over a generic commercial rocket profile with symmetric oversized nose part was carried out. It has been shown that at zero angle of attack for some free-streamvelocity value flow pattern loses its symmetry. This results in non-uniform pressure distribution on rocket surface in angle direction which may yield in additional oscillating stress on the rocket. Also it has been found that obtained non-symmetric flow patterns are stable for small velocity perturbations.
Resumo:
Kansallisten rajojen yli laajentuvat yritykset kohtaavat kasvavia paineita yhtenäistää eri yksiköiden toimintatapoja, prosesseja ja järjestelmiä. Hyvin toteutettuna organisaation sisäinen integrointi voi johtaa tytäryritysten tuottavuuden parantumiseen ja strategisiin mittakaavaetuihin, kun taas huonosti toteutettuna integrointi voi johtaa lisääntyviin konflikteihin ja emoyhtiön kontrollin katoamiseen. Integroinnin kannalta Venäjälle perustettavat tytäryritykset asettavat suuria haasteita. Kasvava ja kehittyvä kansantalous on jatkuvassa muutoksessa kohti edistyneempiä ja tuottavampia toimintamalleja, mutta toisaalta yritystoiminnantaustalla vaikuttaa edelleenkin Neuvostoajan perinnöt, jotka muokkaavat yritysten johtamisrakenteita ja prosesseja. Nämä taustavaikuttajat vaikeuttavat kansainvälisen yrityksen yhtenäistämistä, mutta toisaalta tarjoavat suuria mahdollisuuksia yrityksille, jotka oppivat elämään Venäjän markkinoiden ehdoilla. Tämä tutkimus käyttää apunaan konstruktiivista tutkimustyötä ratkoakseenYIT:n Venäjälle perustettavien yritysten integrointiin liittyviä ongelmia ja mahdollisuuksia. Työn lopputuloksena syntyy oppimiseen pohjautuva integraatiostrategia ja tätä strategiaa tukeva integroinnin johtamisjärjestelmä.