4 resultados para Serum albumin adducts
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
New luminometric particle-based methods were developed to quantify protein and to count cells. The developed methods rely on the interaction of the sample with nano- or microparticles and different principles of detection. In fluorescence quenching, timeresolved luminescence resonance energy transfer (TR-LRET), and two-photon excitation fluorescence (TPX) methods, the sample prevents the adsorption of labeled protein to the particles. Depending on the system, the addition of the analyte increases or decreases the luminescence. In the dissociation method, the adsorbed protein protects the Eu(III) chelate on the surface of the particles from dissociation at a low pH. The experimental setups are user-friendly and rapid and do not require hazardous test compounds and elevated temperatures. The sensitivity of the quantification of protein (from 40 to 500 pg bovine serum albumin in a sample) was 20-500-fold better than in most sensitive commercial methods. The quenching method exhibited low protein-to-protein variability and the dissociation method insensitivity to the assay contaminants commonly found in biological samples. Less than ten eukaryotic cells were detected and quantified with all the developed methods under optimized assay conditions. Furthermore, two applications, the method for detection of the aggregation of protein and the cell viability test, were developed by utilizing the TR-LRET method. The detection of the aggregation of protein was allowed at a more than 10,000 times lower concentration, 30 μg/L, compared to the known methods of UV240 absorbance and dynamic light scattering. The TR-LRET method was combined with a nucleic acid assay with cell-impermeable dye to measure the percentage of dead cells in a single tube test with cell counts below 1000 cells/tube.
Resumo:
Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.
Resumo:
Bone is a physiologically dynamic tissue being constantly regenerated throughout life as a consequence of bone turnover by bone-resorbing osteoclasts and bone-forming osteoblasts. In certain bone diseases, such as osteoporosis, the imbalance in bone turnover leads to bone loss and increased fracture risk. Measurement of bone mineral density (BMD) predicts the risk of fracture, but also biochemical markers of bone metabolism have been suggested to be suitable for prediction of fractures and monitoring the efficacy of antiresorptive treatment. Tartrate-resistant acid phosphatase 5b (TRACP 5b) is an enzyme released from osteoclasts into the circulation, from where it can be detected kinetically or immunologically. Conventional assays for serum total TRACP were spectrophotometric and suffered from interference by other acid phosphatases and non-osteoclastic TRACP 5a isoform. Our aim was to develop novel immunoassays for osteoclastic TRACP 5b. Serum TRACP 5b levels were elevated in individuals with high bone turnover, such as children, postmenopausal women, patients with osteoporosis, Paget’s disease and breast cancer patients with bone metastases. As expected, hormone replacement therapy (HRT) in postmenopausal women decreased the levels of serum TRACP 5b. Surprisingly, the highest TRACP 5b levels were observed in individuals with rare autosomal dominant osteopetrosis type II (ADO2), which is characterized by high BMD and fracture risk with simultaneously elevated levels of deficient osteoclasts. In ADO2 patients, elevated levels of serum TRACP 5b were associated with high fracture frequency. It is likely that serum TRACP 5b reflects the number of inactive osteoclasts in ADO2. Similar results supporting the hypothesis that TRACP 5b would reflect the number of osteoclasts instead of their activity were observed with cultured osteoclasts and in animal models. Novel TRACP 5b immunoassays may prove to be of value either as independent or combinatory tools with other bone metabolic markers and BMD measurements in clinical practice and bone research.
Resumo:
This study is part of the STRIP study, which is a long-term, randomized controlled trial, designed to decrease the exposure of children in the intervention group (n=540) to known risk factors of atherosclerosis. The main focus of the intervention was the quality of dietary fat. The control group (n=522) did not receive any individualized counselling. Food consumption was evaluated with food records, and blood samples were drawn and growth was measured regularly for all participating children from 13 months to 9 years. A subsample of 66 children participated in a dental health survey. The number of studies on children’s carbohydrate intake, especially fibre intake, is insufficient. The current international recommendations for fibre intake in children are based on average assumptions and data extrapolated from intakes in adults and intake recommendations for adults. Finnish nutrition recommendations lack strict recommendations for dietary fibre in children. Due to fibre’s high bulk volume, excessive dietary fibre is considered to decrease energy density and hence it may have an adverse effect on growth. If fats are reduced from the diet, the low-fat diet may become high in sucrose. Therefore, especially in the STRIP study, it is important to determine the use of fibre and sucrose in children and possible associations with growth and nutrition as well as dental health. The results of the present study indicate that a high fibre intake does not displace energy or disturb growth in children and that children with high fibre intake have better quality of diet than those with low fibre intake. Additionally, dietary fibre intake associated inversely with serum cholesterol concentration. Other carbohydrates also affected serum lipid levels as well, since total carbohydrates, sucrose, and fructose increased serum triglyceride concentration. Total carbohydrate intake reduced HDL cholesterol concentration only in children with apoE3 or apoE4 phenotype. Over the period from the 1970s to the 1990s the dental health of children in Finland has substantially improved despite an increase in sucrose intake. The improvement was thought to be due to improved dental hygiene and the use of fluorine. However, during the past twenty years improvement in dental health has stopped. The present study showed that high long-term sugar intake increases risk of caries in children. High intake of sugar had also negative effects on the diet of children, because it worsens dietary quality by displacing essential nutrients. Furthermore, the quality of dietary fat was worse in children with high sucrose intake. In this study the children’s high sucrose intake was not associated with overweight, but interestingly, it associated inversely with growth.