2 resultados para Sensor Networks
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The continuous technology evaluation is benefiting our lives to a great extent. The evolution of Internet of things and deployment of wireless sensor networks is making it possible to have more connectivity between people and devices used extensively in our daily lives. Almost every discipline of daily life including health sector, transportation, agriculture etc. is benefiting from these technologies. There is a great potential of research and refinement of health sector as the current system is very often dependent on manual evaluations conducted by the clinicians. There is no automatic system for patient health monitoring and assessment which results to incomplete and less reliable heath information. Internet of things has a great potential to benefit health care applications by automated and remote assessment, monitoring and identification of diseases. Acute pain is the main cause of people visiting to hospitals. An automatic pain detection system based on internet of things with wireless devices can make the assessment and redemption significantly more efficient. The contribution of this research work is proposing pain assessment method based on physiological parameters. The physiological parameters chosen for this study are heart rate, electrocardiography, breathing rate and galvanic skin response. As a first step, the relation between these physiological parameters and acute pain experienced by the test persons is evaluated. The electrocardiography data collected from the test persons is analyzed to extract interbeat intervals. This evaluation clearly demonstrates specific patterns and trends in these parameters as a consequence of pain. This parametric behavior is then used to assess and identify the pain intensity by implementing machine learning algorithms. Support vector machines are used for classifying these parameters influenced by different pain intensities and classification results are achieved. The classification results with good accuracy rates between two and three levels of pain intensities shows clear indication of pain and the feasibility of this pain assessment method. An improved approach on the basis of this research work can be implemented by using both physiological parameters and electromyography data of facial muscles for classification.
Resumo:
Wireless sensor networks (WSNs) are the key enablers of the internet of things (IoT) paradigm. Traditionally, sensor network research has been to be unlike the internet, motivated by power and device constraints. The IETF 6LoWPAN draft standard changes this, defining how IPv6 packets can be efficiently transmitted over IEEE 802.15.4 radio links. Due to this 6LoWPAN technology, low power, low cost micro- controllers can be connected to the internet forming what is known as the wireless embedded internet. Another IETF recommendation, CoAP allows these devices to communicate interactively over the internet. The integration of such tiny, ubiquitous electronic devices to the internet enables interesting real-time applications. This thesis work attempts to evaluate the performance of a stack consisting of CoAP and 6LoWPAN over the IEEE 802.15.4 radio link using the Contiki OS and Cooja simulator, along with the CoAP framework Californium (Cf). Ultimately, the implementation of this stack on real hardware is carried out using a raspberry pi as a border router with T-mote sky sensors as slip radios and CoAP servers relaying temperature and humidity data. The reliability of the stack was also demonstrated during scalability analysis conducted on the physical deployment. The interoperability is ensured by connecting the WSN to the global internet using different hardware platforms supported by Contiki and without the use of specialized gateways commonly found in non IP based networks. This work therefore developed and demonstrated a heterogeneous wireless sensor network stack, which is IP based and conducted performance analysis of the stack, both in terms of simulations and real hardware.