8 resultados para Sensor Data

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monet teollisuuden konenäkö- ja hahmontunnistusongelmat ovat hyvin samantapaisia, jolloin prototyyppisovelluksia suunniteltaessa voitaisiin hyödyntää pitkälti samoja komponentteja. Oliopohjaiset sovelluskehykset tarjoavat erinomaisen tavan nopeuttaa ohjelmistokehitystä uudelleenkäytettävyyttä parantamalla. Näin voidaan sekä mahdollistaa konenäkösovellusten laajempi käyttö että säästää kustannuksissa. Tässä työssä esitellään konenäkösovelluskehys, joka on perusarkkitehtuuriltaan liukuhihnamainen. Ylätason rakenne koostuu sensorista, datankäsittelyoperaatioista, piirreirrottimesta sekä luokittimesta. Itse sovelluskehyksen lisäksi on toteutettu joukko kuvankäsittely- ja hahmontunnistusoperaatioita. Sovelluskehys nopeuttaa selvästi ohjelmointityötä ja helpottaa uusien kuvankäsittelyoperaatioiden lisää mistä.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Feature extraction is the part of pattern recognition, where the sensor data is transformed into a more suitable form for the machine to interpret. The purpose of this step is also to reduce the amount of information passed to the next stages of the system, and to preserve the essential information in the view of discriminating the data into different classes. For instance, in the case of image analysis the actual image intensities are vulnerable to various environmental effects, such as lighting changes and the feature extraction can be used as means for detecting features, which are invariant to certain types of illumination changes. Finally, classification tries to make decisions based on the previously transformed data. The main focus of this thesis is on developing new methods for the embedded feature extraction based on local non-parametric image descriptors. Also, feature analysis is carried out for the selected image features. Low-level Local Binary Pattern (LBP) based features are in a main role in the analysis. In the embedded domain, the pattern recognition system must usually meet strict performance constraints, such as high speed, compact size and low power consumption. The characteristics of the final system can be seen as a trade-off between these metrics, which is largely affected by the decisions made during the implementation phase. The implementation alternatives of the LBP based feature extraction are explored in the embedded domain in the context of focal-plane vision processors. In particular, the thesis demonstrates the LBP extraction with MIPA4k massively parallel focal-plane processor IC. Also higher level processing is incorporated to this framework, by means of a framework for implementing a single chip face recognition system. Furthermore, a new method for determining optical flow based on LBPs, designed in particular to the embedded domain is presented. Inspired by some of the principles observed through the feature analysis of the Local Binary Patterns, an extension to the well known non-parametric rank transform is proposed, and its performance is evaluated in face recognition experiments with a standard dataset. Finally, an a priori model where the LBPs are seen as combinations of n-tuples is also presented

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, an infrared thermography based sensor was studied with regard to usability and the accuracy of sensor data as a weld penetration signal in gas metal arc welding. The object of the study was to evaluate a specific sensor type which measures thermography from solidified weld surface. The purpose of the study was to provide expert data for developing a sensor system in adaptive metal active gas (MAG) welding. Welding experiments with considered process variables and recorded thermal profiles were saved to a database for further analysis. To perform the analysis within a reasonable amount of experiments, the process parameter variables were gradually altered by at least 10 %. Later, the effects of process variables on weld penetration and thermography itself were considered. SFS-EN ISO 5817 standard (2014) was applied for classifying the quality of the experiments. As a final step, a neural network was taught based on the experiments. The experiments show that the studied thermography sensor and the neural network can be used for controlling full penetration though they have minor limitations, which are presented in results and discussion. The results are consistent with previous studies and experiments found in the literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Internet of Things or IoT is revolutionizing the world we are living in, similarly the way Internet and the web did few decades ago. It is changing how we interact with the things surrounding us. Electronic health and remote patient monitoring are the ways of utilizing these technological improvements towards the healthcare. There are many applications of IoT in eHealth such as, it will open the gate to provide healthcare to the remote areas of the world, where healthcare through traditional hospital systems cannot be provided. To connect these new eHealth IoT systems with the existing healthcare information systems, we can use the existing interoperability standards commonly used in healthcare information systems. In this thesis we implemented an eHealth IoT system based on Health Level 7 interoperability standard for continuous data transmission. There is not much previous work done in implementing the HL7 for continuous sensor data transmission. Some of the previous work was limited to sensors which are not continuous in nature and some of it is only theatrical architecture. This thesis aims to prove that it is possible to implement an eHealth IoT system by using sensors which require continues data transmission, such as respiratory sensors, and to connect it with the existing eHealth information system semantically by using HL7 interoperability standard. This system will be beneficial in implementing eHealth IoT systems for those patients, who requires continuous healthcare personal monitoring. This includes elderly people and patients, whose health need to be monitored constantly. To implement the architecture, HL7 v2.5 is selected due to its ease of implementation and low size. We selected some open source technologies because of their open licenses and large developer community. We will also review the most efficient technology available in every layer of eHealth IoT system and will propose an efficient system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the ever-growing amount of connected sensors (IoT), making sense of sensed data becomes even more important. Pervasive computing is a key enabler for sustainable solutions, prominent examples are smart energy systems and decision support systems. A key feature of pervasive systems is situation awareness which allows a system to thoroughly understand its environment. It is based on external interpretation of data and thus relies on expert knowledge. Due to the distinct nature of situations in different domains and applications, the development of situation aware applications remains a complex process. This thesis is concerned with a general framework for situation awareness which simplifies the development of applications. It is based on the Situation Theory Ontology to provide a foundation for situation modelling which allows knowledge reuse. Concepts of the Situation Theory are mapped to the Context Space Theory which is used for situation reasoning. Situation Spaces in the Context Space are automatically generated with the defined knowledge. For the acquisition of sensor data, the IoT standards O-MI/O-DF are integrated into the framework. These allow a peer-to-peer data exchange between data publisher and the proposed framework and thus a platform independent subscription to sensed data. The framework is then applied for a use case to reduce food waste. The use case validates the applicability of the framework and furthermore serves as a showcase for a pervasive system contributing to the sustainability goals. Leading institutions, e.g. the United Nations, stress the need for a more resource efficient society and acknowledge the capability of ICT systems. The use case scenario is based on a smart neighbourhood in which the system recommends the most efficient use of food items through situation awareness to reduce food waste at consumption stage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous localization and mapping(SLAM) is a very important problem in mobile robotics. Many solutions have been proposed by different scientists during the last two decades, nevertheless few studies have considered the use of multiple sensors simultane¬ously. The solution is on combining several data sources with the aid of an Extended Kalman Filter (EKF). Two approaches are proposed. The first one is to use the ordinary EKF SLAM algorithm for each data source separately in parallel and then at the end of each step, fuse the results into one solution. Another proposed approach is the use of multiple data sources simultaneously in a single filter. The comparison of the computational com¬plexity of the two methods is also presented. The first method is almost four times faster than the second one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent emergence of low-cost RGB-D sensors has brought new opportunities for robotics by providing affordable devices that can provide synchronized images with both color and depth information. In this thesis, recent work on pose estimation utilizing RGBD sensors is reviewed. Also, a pose recognition system for rigid objects using RGB-D data is implemented. The implementation uses half-edge primitives extracted from the RGB-D images for pose estimation. The system is based on the probabilistic object representation framework by Detry et al., which utilizes Nonparametric Belief Propagation for pose inference. Experiments are performed on household objects to evaluate the performance and robustness of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in Information and Communication Technology (ICT), especially those related to the Internet of Things (IoT), are facilitating smart regions. Among many services that a smart region can offer, remote health monitoring is a typical application of IoT paradigm. It offers the ability to continuously monitor and collect health-related data from a person, and transmit the data to a remote entity (for example, a healthcare service provider) for further processing and knowledge extraction. An IoT-based remote health monitoring system can be beneficial in rural areas belonging to the smart region where people have limited access to regular healthcare services. The same system can be beneficial in urban areas where hospitals can be overcrowded and where it may take substantial time to avail healthcare. However, this system may generate a large amount of data. In order to realize an efficient IoT-based remote health monitoring system, it is imperative to study the network communication needs of such a system; in particular the bandwidth requirements and the volume of generated data. The thesis studies a commercial product for remote health monitoring in Skellefteå, Sweden. Based on the results obtained via the commercial product, the thesis identified the key network-related requirements of a typical remote health monitoring system in terms of real-time event update, bandwidth requirements and data generation. Furthermore, the thesis has proposed an architecture called IReHMo - an IoT-based remote health monitoring architecture. This architecture allows users to incorporate several types of IoT devices to extend the sensing capabilities of the system. Using IReHMo, several IoT communication protocols such as HTTP, MQTT and CoAP has been evaluated and compared against each other. Results showed that CoAP is the most efficient protocol to transmit small size healthcare data to the remote servers. The combination of IReHMo and CoAP significantly reduced the required bandwidth as well as the volume of generated data (up to 56 percent) compared to the commercial product. Finally, the thesis conducted a scalability analysis, to determine the feasibility of deploying the combination of IReHMo and CoAP in large numbers in regions in north Sweden.