6 resultados para Self-assembled films
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
The results and discussions in this thesis are based on my studies about selfassembled thiol layers on gold, platinum, silver and copper surfaces. These kinds of layers are two-dimensional, one molecule thick and covalently organized at the surface. They are an easy way to modify surface properties. Self-assembly is today an intensive research field because of the promise it holds for producing new technology at nanoscale, the scale of atoms and molecules. These kinds of films have applications for example, in the fields of physics, biology, engineering, chemistry and computer science. Compared to the extensive literature concerning self-assembled monolayers (SAMs) on gold, little is known about the structure and properties of thiolbased SAMs on other metals. In this thesis I have focused on thiol layers on gold, platinum, silver and copper substrates. These studies can be regarded as a basic study of SAMs. Nevertheless, an understanding of the physical and chemical nature of SAMs allows the correlation between atomic structure and macroscopic properties. The results can be used as a starting point for many practical applications. X-ray photoelectron spectroscopy (XPS) and synchrotron radiation excited high resolution photoelectron spectroscopy (HR-XPS) together with time-offlight secondary ion mass spectrometry (ToF-SIMS) were applied to investigate thin organic films formed by the spontaneous adsorption of molecules on metal surfaces. Photoelectron spectroscopy was the main method used in these studies. In photoelectron spectroscopy, the sample is irradiated with photons and emitted photoelectrons are energy-analyzed. The obtained spectra give information about the atomic composition of the surface and about the chemical state of the detected elements. It is widely used in the study of thin layers and is a very powerful tool for this purpose. Some XPS results were complemented with ToF-SIMS measurements. It provides information on the chemical composition and molecular structure of the samples. Thiol (1-Dodecanethiol, CH3(CH2)11SH) solution was used to create SAMs on metal substrates. Uniform layers were formed on most of the studied metal surfaces. On platinum, surface aligned molecules were also detected in investigations by XPS and ToF-SIMS. The influence of radiation on the layer structure was studied, leading to the conclusion that parts of the hydrocarbon chains break off due to radiation and the rest of the layer is deformed. The results obtained showed differences depending on the substrate material. The influence of oxygen on layer formation was also studied. Thiol molecules were found to replace some of the oxygen from the metal surfaces.
Resumo:
Incap Furniture Oy on koottavien mäntyhuonekalujen sopimusvalmistaja. Yrityksen tavoitteena on saavuttaa 70 miljoonan euron liikevaihto Kärsämäen tehtaalla vuonna 2008. Suurin osa komponenttituotannosta ostetaan alihankintaverkostosta ja valmiit tuotteet pakataan logistiikkakeskuksessa. Diplomityön tavoitteena oli selvittää miten kasvavat materiaalivirrat saadaan tulevaisuudessa käsiteltyä Kärsämäen tehtaan logistiikkakeskuksessa Työn teoriaosassa on ensin käsitelty mahdollisuuksia vähentää kokoonpanon puutetilanteita ostotoimintaa kehittämällä. Teoriaosassa esitellään lisäksi varastonohjausmenetelmiä, sekä yleisesti varastoinnin tehtäväkenttää. Empiirisessä osassa analysoitiin annettujen tietojen avulla vuoden 2008 tavoitetilaa, sekä simuloitiin tavoitetilan materiaalivirtoja suhteessa logistiikkakeskuksen kapasiteettiin. Kasvavat materiaalivirrat pakottavat kehittämään logistiikkakeskuksen toimintaa. Eräluonteisen toiminnan vuoksi kaikkien komponenttien kohdalla on pyrittävä MRP ohjaukseen. Komponenttientilauseriä on pyrittävä pienentämään vastaamaan todellista tarvetta. Kriittisille A- ja B- komponenteille tarvitaan lisäksi puskurivarastot tasaamaan toimitusajan vaihtelua ulkomaantoimituksissa. Pakkauseristä yli jäävät C nimikkeet tulee varastoida jatkossa erillään logistiikkakeskuksesta ja korkeavarastosta. D- ja E-nimikkeitä ei kannata tuoda ulkomailta, eikä niitä ole kannattavaa varastoida lainkaan. Pakkaamon täytyy toimia tulevaisuudessa kolmessa vuorossa ja korkeavaraston työjonoa on lyhennettävä kolmesta vuorokaudesta 4-6 työvuoroon. Edellä mainituilla toimenpiteillä ja toimitusten aktiivisella seurannalla saavutetaan toimintaympäristö, jolloin logistiikkakeskuksen kapasiteetti riittää materiaalivirtojen kasvaessa.
Resumo:
The goal of the thesis was to study fundamental structural and optical properties of InAs islands and In(Ga)As quantum rings. The research was carried out at the Department of Micro and Nanosciences of Helsinki University of Technology. A good surface quality can be essential for the potential applications in optoelectronic devices. For such device applications it is usually necessary to control size, density and arrangement of the islands. In order to study the dependence of the structural properties of the islands and the quantum rings on growth conditions, atomic force microscope was used. Obtained results reveal that the size and the density of the In(Ga)As quantum rings strongly depend on the growth temperature, the annealing time and the thickness of the partial capping layer. From obtained results it is possible to conclude that to get round shape islands and high density one has to use growth temperature of 500 ̊C. In the case of formation of In(Ga)As quantum rings the effect of mobility anisotropy is observed that so the shape of the rings is not symmetric. To exclude this effect it is preferable to use a higher annealing temperature of 570 ̊C. Optical properties were characterized by PL spectroscopy. PL emission was observed from buried InAs quantum dots and In(Ga)As quantum rings grown with different annealing time and temperature and covered with a various thickness of the partial capping layer.
Resumo:
The number of molecular diagnostic assays has increased tremendously in recent years.Nucleic acid diagnostic assays have been developed, especially for the detection of human pathogenic microbes and genetic markers predisposing to certain diseases. Closed-tube methods are preferred because they are usually faster and easier to perform than heterogenous methods and in addition, target nucleic acids are commonly amplified leading to risk of contamination of the following reactions by the amplification product if the reactions are opened. The present study introduces a new closed-tube switchable complementation probes based PCR assay concept where two non-fluorescent probes form a fluorescent lanthanide chelate complex in the presence of the target DNA. In this dual-probe PCR assay method one oligonucleotide probe carries a non-fluorescent lanthanide chelate and another probe a light absorbing antenna ligand. The fluorescent lanthanide chelate complex is formed only when the non-fluorescent probes are hybridized to adjacent positions into the target DNA bringing the reporter moieties in close proximity. The complex is formed by self-assembled lanthanide chelate complementation where the antenna ligand is coordinated to the lanthanide ion captured in the chelate. The complementation probes based assays with time-resolved fluorescence measurement showed low background signal level and hence, relatively high nucleic acid detection sensitivity (low picomolar target concentration). Different lanthanide chelate structures were explored and a new cyclic seven dentate lanthanide chelate was found suitable for complementation probe method. It was also found to resist relatively high PCR reaction temperatures, which was essential for the PCR assay applications. A seven-dentate chelate with two unoccupied coordination sites must be used instead of a more stable eight- or nine-dentate chelate because the antenna ligand needs to be coordinated to the free coordination sites of the lanthanide ion. The previously used linear seven-dentate lanthanide chelate was found to be unstable in PCR conditions and hence, the new cyclic chelate was needed. The complementation probe PCR assay method showed high signal-to-background ratio up to 300 due to a low background fluorescence level and the results (threshold cycles) in real-time PCR were reached approximately 6 amplification cycles earlier compared to the commonly used FRET-based closed-tube PCR method. The suitability of the complementation probe method for different nucleic acid assay applications was studied. 1) A duplex complementation probe C. trachomatis PCR assay with a simple 10-minute urine sample preparation was developed to study suitability of the method for clinical diagnostics. The performance of the C. trachomatis assay was equal to the commercial C. trachomatis nucleic acid amplification assay containing more complex sample preparation based on DNA extraction. 2) A PCR assay for the detection of HLA-DQA1*05 allele, that is used to predict the risk of type 1 diabetes, was developed to study the performance of the method in genotyping. A simple blood sample preparation was used where the nucleic acids were released from dried blood sample punches using high temperature and alkaline reaction conditions. The complementation probe HLA-DQA1*05 PCR assay showed good genotyping performance correlating 100% with the routinely used heterogenous reference assay. 3) To study the suitability of the complementation probe method for direct measurement of the target organism, e.g., in the culture media, the complementation probes were applied to amplificationfree closed-tube bacteriophage quantification by measuring M13 bacteriophage ssDNA. A low picomolar bacteriophage concentration was detected in a rapid 20- minute assay. The assay provides a quick and reliable alternative to the commonly used and relatively unreliable UV-photometry and time-consuming culture based bacteriophage detection methods and indicates that the method could also be used for direct measurement of other micro-organisms. The complementation probe PCR method has a low background signal level leading to a high signal-to-background ratio and relatively sensitive nucleic acid detection. The method is compatible with simple sample preparation and it was shown to tolerate residues of urine, blood, bacteria and bacterial culture media. The common trend in nucleic acid diagnostics is to create easy-to-use assays suitable for rapid near patient analysis. The complementation probe PCR assays with a brief sample preparation should be relatively easy to automate and hence, would allow the development of highperformance nucleic acid amplification assays with a short overall assay time.
Resumo:
Paper-based analytical technologies enable quantitative and rapid analysis of analytes from various application areas including healthcare, environmental monitoring and food safety. Because paper is a planar, flexible and light weight substrate, the devices can be transported and disposed easily. Diagnostic devices are especially valuable in resourcelimited environments where diagnosis as well as monitoring of therapy can be made even without electricity by using e.g. colorimetric assays. On the other hand, platforms including printed electrodes can be coupled with hand-held readers. They enable electrochemical detection with improved reliability, sensitivity and selectivity compared with colorimetric assays. In this thesis, different roll-to-roll compatible printing technologies were utilized for the fabrication of low-cost paper-based sensor platforms. The platforms intended for colorimetric assays and microfluidics were fabricated by patterning the paper substrates with hydrophobic vinyl substituted polydimethylsiloxane (PDMS) -based ink. Depending on the barrier properties of the substrate, the ink either penetrates into the paper structure creating e.g. microfluidic channel structures or remains on the surface creating a 2D analog of a microplate. The printed PDMS can be cured by a roll-ro-roll compatible infrared (IR) sintering method. The performance of these platforms was studied by printing glucose oxidase-based ink on the PDMS-free reaction areas. The subsequent application of the glucose analyte changed the colour of the white reaction area to purple with the colour density and intensity depending on the concentration of the glucose solution. Printed electrochemical cell platforms were fabricated on paper substrates with appropriate barrier properties by inkjet-printing metal nanoparticle based inks and by IR sintering them into conducting electrodes. Printed PDMS arrays were used for directing the liquid analyte onto the predetermined spots on the electrodes. Various electrochemical measurements were carried out both with the bare electrodes and electrodes functionalized with e.g. self assembled monolayers. Electrochemical glucose sensor was selected as a proof-of-concept device to demonstrate the potential of the printed electronic platforms.
Resumo:
For advanced devices in the application fields of data storage, solar cell and biosensing, one of the major challenges to achieve high efficiency is the fabrication of nanopatterned metal oxide surfaces. Such surfaces often require both precise structure at the nanometer scale and controllable patterned structure at the macro scale. Nowadays, the dominating candidates to fabricate nanopatterned surfaces are the lithographic technique and block-copolymer masks, most of which are unfortunately costly and inefficient. An alternative bottom-up approach, which involves organic/inorganic self-assembly and dip-coating deposition, has been studied intensively in recent years and has proven to be an effective technique for the fabrication of nanoperforated metal oxide thin films. The overall objective of this work was to optimize the synthesis conditions of nanoperforated TiO2 (NP-TiO2) thin films, especially to be compatible with mixed metal oxide systems. Another goal was to develop fabrication and processing of NP-TiO2 thin films towards largescale production and seek new applications for solar cells and biosensing. Besides the traditional dip-coating and drop-casting methods, inkjet printing was used to prepare thin films of metal oxides, with the advantage of depositing the ink onto target areas, further enabling cost-effective fabrication of micro-patterned nanoperforated metal oxide thin films. The films were characterized by water contact angle determination, Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Grazing Incidence XRay Diffraction. In this study, well-ordered zinc titanate nanoperforated thin films with different Zn/Ti ratios were produced successfully with zinc precursor content up to 50 mol%, and the dominating phase was Zn2Ti3O8. NP-TiO2 structures were also obtained by a cost-efficient means, namely inkjet printing, at both ambient temperature and 60 °C. To further explore new biosensing applications of nanoperforated oxide thin films, inkjet printing was used for the fabrication of both continuous and patterned polymeric films onto NP-TiO2 and perfluorinated phosphate functionalized NP-TiO2 substrates, respectively. The NP-TiO2 films can be also functionalized with a fluoroalkylsilane, resulting in hydrophobic surfaces on both titania and silica. The surface energy contrast in the nanoperforations can be tuned by irradiating the films with UV light, which provides ideal model systems for wettability studies.