8 resultados para Schwinger Variational Principle
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this book, I apply a philosophical approach to study the precautionary principle in environmental (and health) risk decision-making. The principle says that unacceptable environmental and health risks should be anticipated, and they ought to be forestalled before the damage comes to fruition even if scientific understanding of the risks is inadequate. The study consists of introductory chapters, summary and seven original publications which aim at explicating the principle, critically analysing the debate on the principle, and constructing a basis for the well-founded use of the principle. Papers I-V present the main thesis of this research. In the two last papers, the discussion is widened to new directions. The starting question is how well the currently embraced precautionary principle stands up to critical philosophical scrutiny. The approach employed is analytical: mainly conceptual, argumentative and ethical. The study draws upon Anglo-American style philosophy on the one hand, and upon sources of law as well as concrete cases and decision-making practices at the European Union level and in its member countries on the other. The framework is environmental (and health) risk governance, including the related law and policy. The main thesis of this study is that the debate on the precautionary principle needs to be shifted from the question of whether the principle (or its weak or strong interpretation) is well-grounded in general to questions about the theoretical plausibility and ethical and socio-political justifiability of specific understandings of the principle. The real picture of the precautionary principle is more complex than that found (i.e. presumed) in much of the current academic, political and public debate surrounding it. While certain presumptions and interpretations of the principle are found to be sound, others are theoretically flawed or include serious practical problems. The analysis discloses conceptual and ethical presumptions and elementary understandings of the precautionary principle, critically assesses current practices invoked in the name of the precautionary principle and public participation, and seeks to build bridges between precaution, engagement and philosophical ethics. Hence, it is intended to provide a sound basis upon which subsequent academic scrutiny can build.
Resumo:
The Extended Kalman Filter (EKF) and four dimensional assimilation variational method (4D-VAR) are both advanced data assimilation methods. The EKF is impractical in large scale problems and 4D-VAR needs much effort in building the adjoint model. In this work we have formulated a data assimilation method that will tackle the above difficulties. The method will be later called the Variational Ensemble Kalman Filter (VEnKF). The method has been tested with the Lorenz95 model. Data has been simulated from the solution of the Lorenz95 equation with normally distributed noise. Two experiments have been conducted, first with full observations and the other one with partial observations. In each experiment we assimilate data with three-hour and six-hour time windows. Different ensemble sizes have been tested to examine the method. There is no strong difference between the results shown by the two time windows in either experiment. Experiment I gave similar results for all ensemble sizes tested while in experiment II, higher ensembles produce better results. In experiment I, a small ensemble size was enough to produce nice results while in experiment II the size had to be larger. Computational speed is not as good as we would want. The use of the Limited memory BFGS method instead of the current BFGS method might improve this. The method has proven succesful. Even if, it is unable to match the quality of analyses of EKF, it attains significant skill in forecasts ensuing from the analysis it has produced. It has two advantages over EKF; VEnKF does not require an adjoint model and it can be easily parallelized.
Resumo:
The current thesis manuscript studies the suitability of a recent data assimilation method, the Variational Ensemble Kalman Filter (VEnKF), to real-life fluid dynamic problems in hydrology. VEnKF combines a variational formulation of the data assimilation problem based on minimizing an energy functional with an Ensemble Kalman filter approximation to the Hessian matrix that also serves as an approximation to the inverse of the error covariance matrix. One of the significant features of VEnKF is the very frequent re-sampling of the ensemble: resampling is done at every observation step. This unusual feature is further exacerbated by observation interpolation that is seen beneficial for numerical stability. In this case the ensemble is resampled every time step of the numerical model. VEnKF is implemented in several configurations to data from a real laboratory-scale dam break problem modelled with the shallow water equations. It is also tried in a two-layer Quasi- Geostrophic atmospheric flow problem. In both cases VEnKF proves to be an efficient and accurate data assimilation method that renders the analysis more realistic than the numerical model alone. It also proves to be robust against filter instability by its adaptive nature.
Resumo:
Tutkielma käsittelee Yhdysvaltain CIAn miehittämättömiä lennokki-iskuja Pakistanissa kansainvälisen humanitaarisen oikeuden suhteellisuusperiaatteen näkökulmasta. Suhteellisuusperiaatteen mukaan aseellisista iskuista saatavan sotilaallisen hyödyn tulee olla suhteellinen verrattuna siviileille aiheutuvaan haittaan. CIAn iskuja Pakistanissa on kritisoitu, että ne eivät täytä suhteellisuusperiaatteen asettamia vaatimuksia. Tutkielmassa perehdytään ensinnäkin selvittämään ne velvollisuudet, jotka suhteellisuusperiaate asettaa hyökkääjille. Sen jälkeen CIAn lennokki-iskuja tutkitaan näiden velvollisuuksien valossa. Tutkielmassa pyritään selvittämään antaako suhteellisuusperiaatteen luomat oikeudelliset velvollisuudet riittävää suojaa Pakistanin siviileille lennokki-iskujen tuhoja vastaan. Lisäksi pyritään selvittämään, onko lennokki-iskuissa viitteitä suhteellisuusperiaatteen vastaisista iskuista. Tutkimusmenetelmänä käytetään positivistista lainopin metodia, jonka avulla selvitetään voimassa olevaa kansainvälisen humanitaarisen tapaoikeuden suhteellisuusperiaatteen sisältöä. Oikeudellisina lähteinä käytetään pääasiassa humanitaarista tapaoikeutta, mutta tulkinnallisena apuna myös kansainvälisiä sopimuksia sekä oikeuden päätöksiä. Lisäksi oikeudellinen kirjallisuus on tutkimuksessa tärkeässä asemassa. Tutkimuksessa päädytään siihen, että suhteellisuusperiaatteen asettamat velvollisuudet hyökkääjälle ovat niin epämääräiset, että ne eivät anna riittävää suojaa siviileille. Ensinnäkin hyökkääjä voi määrittää sotilaallisen hyödyn omien päämääriensä mukaisesti suhteellisuusanalyysissä. Lisäksi kynnys sille, mikä katsotaan suhteellisuusperiaatteen vastaisuudeksi on hyvin epämääräinen ja korkea. Tämän vuoksi varotoimenpiteet iskujen suunnittelussa ovat hyvin tärkeässä asemassa myös suhteellisuusanalyysissä. Kuitenkin jos hyökkääjä edes jossain määrin osoittaa, että on tehnyt iskut hyvässä uskossa niiden laillisuudesta, iskujen katsotaan yleensä olevan suhteellisuusperiaatteen mukaisia. CIAn lennokki-iskuissa Pakistanissa on viitteitä suhteellisuusperiaatteen vastaisuudesta erityisesti ”tunnusmerkki-iskujen” osalta. ”Tunnusmerkki-iskut” johtavat yleensä vain vähäiseen sotilaalliseen hyötyyn aiheuttaen silti siviiliuhreja. Lisäksi erityisesti tunnusmerkki-iskuissa edellytetään korkeampaa tarkkuutta varotoimenpiteissä. Kuitenkin useat siviiliuhrit voivat merkitä sitä, että näitä varotoimenpiteitä ei ole noudatettu iskuissa.
Resumo:
One challenge on data assimilation (DA) methods is how the error covariance for the model state is computed. Ensemble methods have been proposed for producing error covariance estimates, as error is propagated in time using the non-linear model. Variational methods, on the other hand, use the concepts of control theory, whereby the state estimate is optimized from both the background and the measurements. Numerical optimization schemes are applied which solve the problem of memory storage and huge matrix inversion needed by classical Kalman filter methods. Variational Ensemble Kalman filter (VEnKF), as a method inspired the Variational Kalman Filter (VKF), enjoys the benefits from both ensemble methods and variational methods. It avoids filter inbreeding problems which emerge when the ensemble spread underestimates the true error covariance. In VEnKF this is tackled by resampling the ensemble every time measurements are available. One advantage of VEnKF over VKF is that it needs neither tangent linear code nor adjoint code. In this thesis, VEnKF has been applied to a two-dimensional shallow water model simulating a dam-break experiment. The model is a public code with water height measurements recorded in seven stations along the 21:2 m long 1:4 m wide flume’s mid-line. Because the data were too sparse to assimilate the 30 171 model state vector, we chose to interpolate the data both in time and in space. The results of the assimilation were compared with that of a pure simulation. We have found that the results revealed by the VEnKF were more realistic, without numerical artifacts present in the pure simulation. Creating a wrapper code for a model and DA scheme might be challenging, especially when the two were designed independently or are poorly documented. In this thesis we have presented a non-intrusive approach of coupling the model and a DA scheme. An external program is used to send and receive information between the model and DA procedure using files. The advantage of this method is that the model code changes needed are minimal, only a few lines which facilitate input and output. Apart from being simple to coupling, the approach can be employed even if the two were written in different programming languages, because the communication is not through code. The non-intrusive approach is made to accommodate parallel computing by just telling the control program to wait until all the processes have ended before the DA procedure is invoked. It is worth mentioning the overhead increase caused by the approach, as at every assimilation cycle both the model and the DA procedure have to be initialized. Nonetheless, the method can be an ideal approach for a benchmark platform in testing DA methods. The non-intrusive VEnKF has been applied to a multi-purpose hydrodynamic model COHERENS to assimilate Total Suspended Matter (TSM) in lake Säkylän Pyhäjärvi. The lake has an area of 154 km2 with an average depth of 5:4 m. Turbidity and chlorophyll-a concentrations from MERIS satellite images for 7 days between May 16 and July 6 2009 were available. The effect of the organic matter has been computationally eliminated to obtain TSM data. Because of computational demands from both COHERENS and VEnKF, we have chosen to use 1 km grid resolution. The results of the VEnKF have been compared with the measurements recorded at an automatic station located at the North-Western part of the lake. However, due to TSM data sparsity in both time and space, it could not be well matched. The use of multiple automatic stations with real time data is important to elude the time sparsity problem. With DA, this will help in better understanding the environmental hazard variables for instance. We have found that using a very high ensemble size does not necessarily improve the results, because there is a limit whereby additional ensemble members add very little to the performance. Successful implementation of the non-intrusive VEnKF and the ensemble size limit for performance leads to an emerging area of Reduced Order Modeling (ROM). To save computational resources, running full-blown model in ROM is avoided. When the ROM is applied with the non-intrusive DA approach, it might result in a cheaper algorithm that will relax computation challenges existing in the field of modelling and DA.
Resumo:
Simplifying the Einstein field equation by assuming the cosmological principle yields a set of differential equations which governs the dynamics of the universe as described in the cosmological standard model. The cosmological principle assumes the space appears the same everywhere and in every direction and moreover, the principle has earned its position as a fundamental assumption in cosmology by being compatible with the observations of the 20th century. It was not until the current century when observations in cosmological scales showed significant deviation from isotropy and homogeneity implying the violation of the principle. Among these observations are the inconsistency between local and non-local Hubble parameter evaluations, baryon acoustic features of the Lyman-α forest and the anomalies of the cosmic microwave background radiation. As a consequence, cosmological models beyond the cosmological principle have been studied vastly; after all, the principle is a hypothesis and as such should frequently be tested as any other assumption in physics. In this thesis, the effects of inhomogeneity and anisotropy, arising as a consequence of discarding the cosmological principle, is investigated. The geometry and matter content of the universe becomes more cumbersome and the resulting effects on the Einstein field equation is introduced. The cosmological standard model and its issues, both fundamental and observational are presented. Particular interest is given to the local Hubble parameter, supernova explosion, baryon acoustic oscillation, and cosmic microwave background observations and the cosmological constant problems. Explored and proposed resolutions emerging by violating the cosmological principle are reviewed. This thesis is concluded by a summary and outlook of the included research papers.