49 resultados para SYSTEMATIC POSITION
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Abstract
Resumo:
Under the circumstances of the increasing market pressure, enterprises try to improve their competitive position by development efforts, and a business development project is one tool for that. There are not many answers to the question of how the development projects launched to improve the business performance in SMEs have succeeded. Theacademic interest in the business development project success has mainly focused on projects implemented in larger organisations rather than in SMEs. The previous studies on the business success of SMEs have mainly focused on new business ventures rather than on existing SMEs. However, nowadays a large number of business development projects are undertaken in existing SMEs, where they can pose a great challenge. This study focuses on business development success in SMEs thathave already established their business. The objective of the present study is to gain a deep understanding on business development project success in the SME-context and to identify the dimensions and factors affecting the project success. Further, the aim is to clarify how the business development projects implemented in SMEs have affected their performance. The empirical evidence is based on multiple case study. This study builds a framework for a generic theory of business development success in the SME-context, based on literature from the areas ofproject and change management, entrepreneurship and small business management, as well as performance measurement, and on empirical evidence from SMES. The framework consists of five success dimensions: entrepreneurial, project preparation, change management, project management and project success. The framework provides a systematic way for analysing the business development project and its impact on the performance and on the performing company. This case evidence indicates that successful business development projects have a balanced, high performance concerning all the dimensions. Good performance in one dimension is not enoughfor the project success, but it gives a good ground for the other dimensions. The other way round, poor performance in one success dimension affects the others, leading to poor performance of the project. In the SME-context the business development project success seems to be dependent on several interrelated dimensions and factors. Success in one area leads to success in other areas, and so creates an upward success spiral. Failure in one area seems to lead to failure in other areas, creating a downward failure spiral. The study indicates that the internal business development projects have affected the SMEs' performance widely also on areas and functions not initially targeted. The implications cover all thesuccess categories: the project efficiency, the impact on the customer, the business success and the future potentiality. With successful cases, the success tends to spread out to areas and functions not mentioned as the project goals, andwith unsuccessful cases the failure seems to spread out widely to the SMEs' other functions. This study also indicates that the most important key factors for successful business development project implementation are the strength of intention, business ability, knowledge, motivation and participation of the employees, as well as adequate and well-timed training provided to the employees.
Resumo:
Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.
Resumo:
The present dissertation is devoted to the systematic approach to the development of organic toxic and refractory pollutants abatement by chemical decomposition methods in aqueous and gaseous phases. The systematic approach outlines the basic scenario of chemical decomposition process applications with a step-by-step approximation to the most effective result with a predictable outcome for the full-scale application, confirmed by successful experience. The strategy includes the following steps: chemistry studies, reaction kinetic studies in interaction with the mass transfer processes under conditions of different control parameters, contact equipment design and studies, mathematical description of the process for its modelling and simulation, processes integration into treatment technology and its optimisation, and the treatment plant design. The main idea of the systematic approach for oxidation process introduction consists of a search for the most effective combination between the chemical reaction and the treatment device, in which the reaction is supposed to take place. Under this strategy,a knowledge of the reaction pathways, its products, stoichiometry and kinetics is fundamental and, unfortunately, often unavailable from the preliminary knowledge. Therefore, research made in chemistry on novel treatment methods, comprisesnowadays a substantial part of the efforts. Chemical decomposition methods in the aqueous phase include oxidation by ozonation, ozone-associated methods (O3/H2O2, O3/UV, O3/TiO2), Fenton reagent (H2O2/Fe2+/3+) and photocatalytic oxidation (PCO). In the gaseous phase, PCO and catalytic hydrolysis over zero valent ironsare developed. The experimental studies within the described methodology involve aqueous phase oxidation of natural organic matter (NOM) of potable water, phenolic and aromatic amino compounds, ethylene glycol and its derivatives as de-icing agents, and oxygenated motor fuel additives ¿ methyl tert-butyl ether (MTBE) ¿ in leachates and polluted groundwater. Gas-phase chemical decomposition includes PCO of volatile organic compounds and dechlorination of chlorinated methane derivatives. The results of the research summarised here are presented in fifteenattachments (publications and papers submitted for publication and under preparation).