9 resultados para SUNLIGHT

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämän diplomityön tarkoituksena oli tutkia miten kuluttajien kierrättämästä polyeteenitereftalaatista ( PET ) voi valmistaa tyydyttymättömiä polyesterihartseja. Työssä valmistettiin yleiskäyttöön soveltuva laminointihartsi sekä 'gel coat' -hartsi jota käytetään esim. veneiden pintamaalina. Yleishartsin depolymerointiin käytettiin propyleeniglykolia ja 'gel coat' -hartsin valmistamiseen neopentyyliglykolia. Polykondensaatiovaiheessa reaktioon lisättiin maleiinihappoa ja lopuksi hartsit liuotettiin styreeniin. Kirjallisuusosassa esitetään eri menetelmiä PET:n depolymeroimiseksi. Lisäksi esitetään eri vaihtoehtoja glykolien, happojen, katalyyttien ja vinyylimonomeerien valitsemiseksi tyydyttymättömien polyesterihartsien valmistuksessa. Analyysimenetelmiä nestemäisten ja kovetettujen hartsien tutkimiseen ja vertailuun käydään läpi kuten myös erilaisia sovelluksia polyesterihartsien käyttämiseksi. Kokeellinen osa todisti että PET-pullojäte voidaan prosessoida hartsiksiilman uusia investointeja prosessilaitteistoon. PET:n glykolyysi kesti viidestäseitsemään tuntia ja polykondensaatiovaihe kahdesta ja puolesta viiteen tuntiin. Hartsien molekyylipainot ja mekaanisten testien tulokset olivat vertailukelpoisia kaupallisten hartsien antamien tulosten kanssa. Glykolyysivaiheen momomeeri- ja oligomeeripitoisuudet mitattiin geelipermeaatiokromatografialla, jotta nähtiin miten pitkälle depolymerisaatio oli edennyt. Tätä tietoa voidaan hyödyntää uusien hartsireseptin suunnittelussa. Polymeeriketjussa jäljellä olevien C=C kaksoissidosten määrä ja niiden isomeraatioaste maleaattimuodosta fumaraattimuotoon mitattiin 1H-NMR -menetelmällä. Tislevesien koostumus määritettiin kaasukromatografialla, ja tulokset kertoivat katalyytin sisältämän kloorin reagoineen glykolien kanssa, johtaen suureen glykolikulutukseen ja muihin ei-toivottuihin sivureaktioihin. Hartsien sietokykyä auringon valolle mitattiin niiden UV-absorption avulla. Kummastakin hartsista valmistettiin 'gel coat' -maalit jotkalaitettiin sääkoneeseen, joka simuloi auringonpaistetta ja vesisadetta vuorotellen. Näistä 'gel coateista' mitattiin niiden kellastumista. Kummastakin hartsista tehdyt valut asetettiin myös sääkoneeseen ja IR-spektreistä ennen jajälkeen koetta nähtiin että C=O ja C-O esterisidoksia oli hajonnut.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stratospheric ozone can be measured accurately using a limb scatter remote sensing technique at the UV-visible spectral region of solar light. The advantages of this technique includes a good vertical resolution and a good daytime coverage of the measurements. In addition to ozone, UV-visible limb scatter measurements contain information about NO2, NO3, OClO, BrO and aerosols. There are currently several satellite instruments continuously scanning the atmosphere and measuring the UVvisible region of the spectrum, e.g., the Optical Spectrograph and Infrared Imager System (OSIRIS) launched on the Odin satellite in February 2001, and the Scanning Imaging Absorption SpectroMeter for Atmospheric CartograpHY (SCIAMACHY) launched on Envisat in March 2002. Envisat also carries the Global Ozone Monitoring by Occultation of Stars (GOMOS) instrument, which also measures limb-scattered sunlight under bright limb occultation conditions. These conditions occur during daytime occultation measurements. The global coverage of the satellite measurements is far better than any other ozone measurement technique, but still the measurements are sparse in the spatial domain. Measurements are also repeated relatively rarely over a certain area, and the composition of the Earth’s atmosphere changes dynamically. Assimilation methods are therefore needed in order to combine the information of the measurements with the atmospheric model. In recent years, the focus of assimilation algorithm research has turned towards filtering methods. The traditional Extended Kalman filter (EKF) method takes into account not only the uncertainty of the measurements, but also the uncertainty of the evolution model of the system. However, the computational cost of full blown EKF increases rapidly as the number of the model parameters increases. Therefore the EKF method cannot be applied directly to the stratospheric ozone assimilation problem. The work in this thesis is devoted to the development of inversion methods for satellite instruments and the development of assimilation methods used with atmospheric models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis, the process in which carbon dioxide is converted into sugars using the energy of sunlight, is vital for heterotrophic life on Earth. In plants, photosynthesis takes place in specific organelles called chloroplasts. During chloroplast biogenesis, light is a prerequisite for the development of functional photosynthetic structures. In addition to photosynthesis, a number of other metabolic processes such as nitrogen assimilation, the biosynthesis of fatty acids, amino acids, vitamins, and hormones are localized to plant chloroplasts. The biosynthetic pathways in chloroplasts are tightly regulated, and especially the reduction/oxidation (redox) signals play important roles in controlling many developmental and metabolic processes in chloroplasts. Thioredoxins are universal regulatory proteins that mediate redox signals in chloroplasts. They are able to modify the structure and function of their target proteins by reduction of disulfide bonds. Oxidized thioredoxins are restored via the action of thioredoxin reductases. Two thioredoxin reductase systems exist in plant chloroplasts, the NADPHdependent thioredoxin reductase C (NTRC) and ferredoxin-thioredoxin reductase (FTR). The ferredoxin-thioredoxin system that is linked to photosynthetic light reactions is involved in light-activation of chloroplast proteins. NADPH can be produced via both the photosynthetic electron transfer reactions in light, and in darkness via the pentose phosphate pathway. These different pathways of NADPH production enable the regulation of diverse metabolic pathways in chloroplasts by the NADPH-dependent thioredoxin system. In this thesis, the role of NADPH-dependent thioredoxin system in the redox-control of chloroplast development and metabolism was studied by characterization of Arabidopsis thaliana T-DNA insertion lines of NTRC gene (ntrc) and by identification of chloroplast proteins regulated by NTRC. The ntrc plants showed the strongest visible phenotypes when grown under short 8-h photoperiod. This indicates that i) chloroplast NADPH-dependent thioredoxin system is non-redundant to ferredoxinthioredoxin system and that ii) NTRC particularly controls the chloroplast processes that are easily imbalanced in daily light/dark rhythms with short day and long night. I identified four processes and the redox-regulated proteins therein that are potentially regulated by NTRC; i) chloroplast development, ii) starch biosynthesis, iii) aromatic amino acid biosynthesis and iv) detoxification of H2O2. Such regulation can be achieved directly by modulating the redox state of intramolecular or intermolecular disulfide bridges of enzymes, or by protecting enzymes from oxidation in conjunction with 2-cysteine peroxiredoxins. This thesis work also demonstrated that the enzymatic antioxidant systems in chloroplasts, ascorbate peroxidases, superoxide dismutase and NTRC-dependent 2-cysteine peroxiredoxins are tightly linked up to prevent the detrimental accumulation of reactive oxygen species in plants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tämä työ käsittelee eri tapoja, joilla biomassasta voidaan valmistaa metanolia. Työssä käydään läpi eri valmistusreitit sekä tarkastellaan biomassaa raaka-aineena. Työhön on myös koottu joidenkin maailmalla tehtyjen tutkimusten aine- ja energiataseita. Tutkimusten pohjalta mietitään onko metanolin tuotanto liikennepolttoaineeksi tällä hetkellä taloudellisesti tai energiatehokkuudeltaan järkevää. Metanolia voidaan valmistaa biomassasta pääsääntöisesti viidellä eri tavalla. Ensimmäinen tapa on kaasuttaa biomassaa, jolloin tuotetaan raaka-kaasua. Raaka-kaasusta jalostetaan synteesikaasua, josta voidaan metanolisynteesillä valmistaa metanolia. Toinen tapa metanolin valmistamiseksi on liittää tuotanto sellunkeiton yhteyteen. Tällöin raaka-aineena olisi selluprosessissa syntyvä mustalipeä, josta metanoli voidaan erottaa. Kolmas mahdollinen valmistusprosessi on biomassan mädätys. Mädätyksessä syntyy biokaasua, josta jalostetaan synteesikaasuaja siitä edelleen metanolia. Neljäs keino metanolin valmistamiseksi biomassasta on pyrolyysi. Puun pyrolyysissä puu kuumennetaan nopeasti hapettomissa tai rajallisen hapensaannin olosuhteissa. Prosessissa syntyvästä pyrolyysiöljystä voidaan erottaa metanolia tislaamalla. Viides mahdollinen reitti metanolin valmistukselle on Fischer¬–Tropsch-synteesi. Biomassasta saatu synteesikaasu johdetaan FT-synteesiin, jossa katalyyttisesti saadaan hiilivetyjen ohella tuotettua metanolia. Biopolttoaineiden kuten metanolin valmistusprosesseja tutkitaan ja kehitetään jatkuvasti, sillä uusiutumattomat energianlähteet eivät riitä loputtomasti ja niiden aiheuttamia hiilidioksidipäästöjä halutaan vähentää. Tällä hetkellä tuotantoteknologiat eivät ole vielä tarpeeksi kehittyneet, jotta tuotanto saataisiin vastaamaan kulutusta. Metanolia ei kuitenkaan vielä voida käyttää sellaisenaan liikennepolttoaineena, joten metanolin markkinat ainakin vielä ovat sillä saralla varsin kapeat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Life on earth is based on sunlight, which is captured in chemical form by photosynthetic reactions. In the chloroplasts of plants, light reactions of photosynthesis take place at thylakoid membranes, whereas carbon assimilation reactions occur in the soluble stroma. The products of linear electron transfer (LET), highly-energetic ATP molecules, and reducing power in the form of NADPH molecules, are further used in the fixation of inorganic CO2 molecules into organic sugars. Ferredoxin-NADP+ oxidoreductase (FNR) catalyzes the last of the light reactions by transferring electrons from ferredoxin (FD) to NADP+. In addition to LET, FNR has been suggested to play a role in cyclic electron transfer (CET), which produces ATP without the accumulation of reducing equivalents. CET is proposed to occur via two putative routes, the PGR5- route and the NDH-route. In this thesis, the leaf-type FNR (LFNR) isoforms LFNR1 and LFNR2 of a model organism, Arabidopsis thaliana, were characterized. The physiological roles of LFNRs were investigated using single and double mutant plants. The viability of the single mutants indicates functionality of both isoforms, with neither appearing to play a specific role in CET. The more severe phenotype of low-temperature adapted fnr2 plants compared to both wild-type (WT) and fnr1 plants suggests a specific role for LFNR2 under unfavorable growth conditions. The more severe phenotype of the fnr1 x fnr2 (F1 generation) plants compared to single mutants reflects down-regulated photosynthetic capacity, whereas slightly higher excitation pressure indicates mild over-excitation of electron transfer chain (ETC). However, induction of CET and various photoprotective mechanisms enable adaptation of fnr1 x fnr2 plants to scarcity of LFNR. The fnr1 fnr2 plants (F2 generation), without detectable levels of LFNR, were viable only under heterotrophic conditions. Moreover, drought stress induced acceleration of the rate of P700 + re-reduction in darkness was accompanied by a concomitant up-regulation of the PGR5-route specific components, PGR5 and PGRL1, demonstrating the induction of CET via the PGR5-route. The up-regulation of relative transcriptional expression of the FD1 gene indicates that the FD1 isoform may have a specific function in CET, while no such role could be defined for either of the LFNR isoforms. Both the membrane-bound and soluble LFNR1 and LFNR2 each appear as two distinct spots after 2D-PAGE with different isoelectric points (pIs), indicating the existence of post-translational modifications (PTMs) which do not determine the membrane attachment of LFNR. The possibility of phosphorylation and glycosylation PTMs were excluded, but all four LFNR forms were shown to contain acetylated lysine residues as well as alternative N-termini. N-terminal acetylation was shown to shift the pI of both LFNRs to be more acidic. In addition, all four LFNR forms were demonstrated to interact both with FD1 and FD2 in vitro

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Roles of novel biomarkers was studied in progression of cutaneous squamous cell carcinoma (cSCC) as the most common metastatic skin cancer. The incidence of cSCC is increasing worldwide due to lifestyle changes such as recreational exposure to sunlight and the aging of the population. Because of an emerging need for molecular markers for the progression of cSCC, we set our goal to characterize three distinct novel markers overexpressed in cSCC cells. Our results identified overexpression of serpin peptidase inhibitor clade A member 1 (SerpinA1), EphB2 and absent in melanoma 2 (AIM2) in cSCC cell lines compared with normal human epidermal keratinocytes (NHEKs). Immunohistochemical analysis of SerpinA1, EphB2 and AIM2 revealed abundant tumor cell-specific expression of cytoplasmic SerpinA1 and AIM2 and cytoplasmic and membranous EphB2 in cSCC tumors in vivo. The staining intensity of SerpinA1, EphB2 and AIM2 was significantly stronger in cSCC as compared with carcinoma in situ (cSCCIS) and actinic keratosis (AK). Tumor cell-associated SerpinA1 and EphB2 was noted in chemically induced mouse skin SCC, and the staining intensity was stronger in mouse cSCCs than in untreated skin. AIM2 staining intensity was significantly more abundant in cSCC of organ transplant recipients (OTR) than in sporadic cSCC in vivo. EphB2 knockdown resulted in inhibition of migration in cSCC cells. In addition, knockdown of EphB2 and AIM2 was found to inhibit the proliferation and invasion of cSCC cells and to delay the growth and vascularization of cSCC xenografts in vivo. Altogether, these findings identify SerpinA1 as a novel biomarker for cSCC. In addition, characterization of the roles of EphB2 and AIM2 in the progression of cSCC was implicated them as possible therapeutic targets for the treatment of cSCC particularly in unresectable and metastatic tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usage of PV batteries nowadays became more and more widely spread. Due to the fact that the efficiency of modern PV is rising every year the prevalence of this source of energy is increasing. As the source of the energy is sunlight, these batteries need to be complimented by storage capacitors which will store energy for future use. Nevertheless the less the calculation of demanded amount of energy according the load and capacity of a storage battery that will keep the end consumer in work during certain time still is not overviewed. In this thesis the overall system will be considered and there will be made economic calculations for configurations of such system that will depend from the load. Also the behavior of the system in different geographical and climate conditions that influence of the amount of energy produced will be overviewed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Living nature consists of countless organisms, which are classified into millions of species. These species interact in many ways; for example predators when foraging on their prey, insect larvae consuming plants, and pathogenic bacteria drifting into humans. In addition, abiotic nature has a great initiative impact on life through many factors (including sunlight, ambient temperature, and water. In my thesis, I have studied interactions among different life forms in multifaceted ways. The webs of these interactions are commonly referred to as food webs, describing feeding relationships between species or energy transfer from one trophic level to another. These ecological interactions – whether they occur between species, between individuals, or between microorganisms within an individual – are among the greatest forces affecting natural communities. Relationships are tightly related to biological diversity, that is, species richness and abundances. A species is called a node in food web vocabulary, and its interactions to other species are called links. Generally, Artic food webs are considered to be loosely linked, simple structures. This conception roots into early modern food webs, where insects and other arthropods, for example, were clumped under one node. However, it has been shown that arthropods form the greatest part of diversity and biomass both in the tropics and in Arctic areas. Earlier challenges of revealing the role of insects and microorganisms in interactions webs have become possible with the help of recent advances in molecular techniques. In the first chapter, I studied the prey diversity of a common bat, Myotis daubentonii, in southwestern Finland. My results proved M. daubentonii being a versatile predator whose diet mainly consists of aquatic insects, such as chironomid midges. In the second chapter, I expanded the view to changes in seasonal and individual-based variation in the diet of M. daubentonii including the relationship between available and observed prey. I found out that chironomids remain the major prey group even though their abundance decreases in proportion to other insect groups. Diet varied a lot between individuals, although the differences were not statistically significant. The third chapter took the study to a large network in Greenland. I showed that Artic food webs are very complex when arthropods are taken into account. In the fourth chapter, I examined the bacterial flora of M. daubentonii and surveyed the zoonotic potential of these bacteria. I found Bartonella bacteria, of which one was described as a new species named after the locality of discovery. I have shown in my thesis that Myotis daubentonii as a predator links many insect species as well as terrestrial and aquatic environments. Moreover, I have exposed that Arctic food webs are complex structures comprising of many densely linked species. Finally, I demonstrated that the bacterial flora of bats includes several previously unknown species, some of which could possibly turn in to zoonosis. To summarize, molecular methods have untied several knots in biological research. I hope that this kind of increasing knowledge of the surrounding nature makes us further value all the life forms on earth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Titanium dioxide (TiO2) nanoparticles with different sizes and crystalloid structures produced by the thermal method and doped with silver iodide (AgI), nitrogen (N), sulphur (S) and carbon (C) were applied as adsorbents. The adsorption of Methyl Violet (MV), Methylene Blue (MB), Methyl Orange (MO) and Orange II on the surface of these particles was studied. The photocatalytic activity of some particles for the destruction of MV and Orange II was evaluated under sunlight and visible light. The equilibrium adsorption data were fitted to the Langmuir, Freundlich, Langmuir-Freundlich and Temkin isotherms. The equilibrium data show that TiO2 particles with larger sizes and doped with AgI, N, S and C have the highest adsorption capacity for the dyes. The kinetic data followed the pseudo-first order and pseudo-second order models, while desorption data fitted the zero order, first order and second order models. The highest adsorption rate constant was observed for the TiO2 with the highest anatase phase percentage. Factors such as anatase crystalloid structure, particle size and doping with AgI affect the photocatalytic activity significantly. Increasing the rutile phase percentage also decreases the tendency to desorption for N-TiO2 and S-TiO2. Adsorption was not found to be important in the photocatalytic decomposition of MV in an investigation with differently sized AgI-TiO2 nanoparticles. Nevertheless C-TiO2 was found to have higher adsorption activity onto Orange II, as the adsorption role of carbon approached synchronicity with the oxidation role.