4 resultados para STRATA

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary: Stone age loanword strata in Finnish

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this thesis, cleaning of ceramic filter media was studied. Mechanisms of fouling and dissolution of iron compounds, as well as methods for cleaning ceramic membranes fouled by iron deposits were studied in the literature part. Cleaning agents and different methods were closer examined in the experimental part of the thesis. Pyrite is found in the geologic strata. It is oxidized to form ferrous ions Fe(II) and ferric ions Fe(III). Fe(III) is further oxidized in the hydrolysis to form ferric hydroxide. Hematite and goethite, for instance, are naturally occurring iron oxidesand hydroxides. In contact with filter media, they can cause severe fouling, which common cleaning techniques competent enough to remove. Mechanisms for the dissolution of iron oxides include the ligand-promoted pathway and the proton-promoted pathway. The dissolution can also be reductive or non-reductive. The most efficient mechanism is the ligand-promoted reductive mechanism that comprises two stages: the induction period and the autocatalytic dissolution.Reducing agents(such as hydroquinone and hydroxylamine hydrochloride), chelating agents (such as EDTA) and organic acids are used for the removal of iron compounds. Oxalic acid is the most effective known cleaning agent for iron deposits. Since formulations are often more effective than organic acids, reducing agents or chelating agents alone, the citrate¿bicarbonate¿dithionite system among others is well studied in the literature. The cleaning is also enhanced with ultrasound and backpulsing.In the experimental part, oxalic acid and nitric acid were studied alone andin combinations. Also citric acid and ascorbic acid among other chemicals were tested. Soaking experiments, experiments with ultrasound and experiments for alternative methods to apply the cleaning solution on the filter samples were carried out. Permeability and ISO Brightness measurements were performed to examine the influence of the cleaning methods on the samples. Inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis of the solutions was carried out to determine the dissolved metals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This PhD study aims to exploit the rich archive provided by the Miocene mollusc fauna of the Pebas Formation and other inland Miocene Amazonian formations to reconstruct landscape evolution and biotic development in lowland Amazonia during the Neogene. Over 160 samples from more than 70 Pebas Formation outcrops mostly collected by the author were processed for this study. Additional samples were collected in Andean areas of Colombia and Venezuela and further material from other northwestern South American basins was studied in museums. Pebas Formation samples and well log data made available by Occidental Peru from three wells in the Marañon Basin in Peru were also investigated. During this study four genera and 74 species from the Pebas Formation have been described and a further 13 species have been introduced in open nomenclature, and several species were reported for the first time. The number of mollusc species attributed to the Pebas fauna has increased from around 50 to 156. The Pebas fauna is characterised as aquatic, endemic and extinct, and is a typical representative of a long-lived lake fauna. Fluvial taxa are not common, (marginal) marine taxa are rare. An additional molluscan fauna from the Miocene Solimões Formation of Brazil, containing 13 fresh water species was also described. The newly documented fauna was used to improve biostratigraphic framework of Miocene Amazonian deposits. Twelve mollusc zones were introduced, the upper eleven of which cover a time interval of approximately seven million years covered previously by only three pollen zones. An age model calculated for the borehole data indicates that the Pebas Formation was deposited between c. 24 and 11 Ma. The areal distribution of the outcropping mollusc zones uncovered a broad dome structure, termed here the Iquitos-Araracuara anteclise in the study area. The structure appears to have influenced river courses and also contributed to edaphic heterogeneity that may have been in part responsible for the current high biodiversity in the study area. The Pebas system was a huge system (> one million km2) dominated by relatively shallow lakes, but also containing swamps and rivers. The system was fed by rivers draining the emergent Andes in the west and lowlands and cratons to the east. The Pebas system was located at sea level and was open to marine settings through a northern portal running through the Llanos Basin and East Venezuela Basin towards the Caribbean. Cyclical baselevel changes possibly related to Mylankhovitch cycles, have been documented in depositional sequences of the Pebas Formation. The composition of the Pebasian mollusc fauna implies that the system was mostly a fresh water system. Such an interpretation is matched by strontium isotope ratios as well as very negative δ18O ratios found in the shells, but is at odds with oligohaline and mesohaline ichnofacies found in the same strata. The mollusc fauna of the Pebas Formation diversified through most of the existence of the lake system. The diversification was mostly the result of in-situ cladogenesis. The success of some of the Pebasian endemic clades is explained by adaptation to fresh water, low oxygen, common unconsolidated lake bottoms (soup grounds) as well as high predation intensity. Maximum diversity was reached at the base of the late Middle to early Late Miocene Grimsdalea pollen zone, some 13 Ma. At the time some 85 species co-occurred, 67 of which are considered as Pebasian endemics. A subsequent drop in species richness coincides with indications of elevated salinities, although a causal relation still needs to be established. Apparently the Pebas fauna went (almost) entirely extinct with the replacement of the lake system into a fluvio-tidal system during the Early Late Miocene, some 11 Ma.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mikkelin talousvedestä kahden kolmasosan tullessa Pursialan pohjavesialueelta on alueen suojeleminen tärkeää. Pohjaveden laatua uhkaavat etenkin alueella sattuneet pohjavedenpilaantumistapaukset. Merkittävimmät pohjaveden pilaantumistapaukset ovat VAPO Oy:n sahan aiheuttama pohjaveden pilaantuminen kloorifenoleilla (CP) ja VR:n ratapölkkykyllästämön aiheuttama pohjaveden pilaantuminen kreosoottiöljyllä sekä Rinnekadun Nesteen aiheuttama pohjaveden pilaantuminen MTBE:llä. Alueella on tehty tutkimuksia ja kunnostuksia pilaantumiin liittyen, mutta näiden tuloksia ei ole aikaisemmin koottu yhteen. Tämän työn tavoitteena oli koota tulokset samaan aineistoon. Työssä keskityttiin kloorifenolien leviämisen tarkasteluun sen Pursialan pohjavedenottamolle muodostaman suurimman uhan vuoksi. Kallioperätietojen, maanpintatietojen ja näytetietojen pohjalta laadittiin myös pienoismalli CP-pilaantuman leviämisen kokonaiskuvan hahmottamiseksi. Työn tavoitteena oli lisäksi tehdä riskitarkastelua CP-pilaantumaan liittyen ja etsiä keinoja hallita havaittuja riskejä. Riskinhallintaan liittyen työssä tutkittiin kloorifenoleilla pilaantuneen alueen maaperä- ja kalliotietoja sekä pohjaveden laatutietoja. Pursialan pohjavedessä on runsaasti rautaa ja mangaania sekä aggressiivista hiilihappoa. Pohjaveden pH on alueella noin 6,5, lämpötila noin 7,5 ºC ja happipitoisuus noin 0,7 mg/l. Pursialan kaupunginalueen kallioperässä on havaittavissa VAPO Oy:n sahalta vedenottamolle etenevä kalliopainanne, jota pitkin CP etenee. Alueen kallioperä on kiillegneissiä, jossa on pohjois–etelä-suuntaista rakoilua. Maaperätuloksien perusteella on havaittavissa vettä hyvin johtavien maakerrosten jatkuminen koko vedenottamon ja sahan välisen matkan, mikä tarkoittaa, että CP-pitoisella pohjavedellä voi olla aiemmin oletettua nopeampikin yhteys sahalta vedenottamolle. Suurin CP-pitoisuus noin 100 000 µg/l on mitattu KY-5-altaan kohdalle asennetun M14-pohjavesiputken pohjasta. Talousvesiasetuksen raja-arvo CP:lle on 10 µg/l. Sahan ja vedenottamon puolivälissä on havaittu yli 10 000 µg/l meneviä CP-pitoisuuksia. Suurin vedenottamon kaivoista (kaivo 10) mitattu pitoisuus on 149 µg/l. Jakotukilta raakavedestä otetuissa näytteissä tai talousvedessä ei ole kuitenkaan havaittu talousvesiasetuksen ylittäviä CP-pitoisuuksia. Pienoismallin perusteella CP sijaitsee sahan alueella lähellä kallionpintaa ja hajaantuu koko pohjavesipatjaan vedenottamolle päin mentäessä. CP-mittaustuloksissa on havaittavissa pulssimaisuutta. Tämä johtuu todennäköisesti Saimaan pinnan vaihtelun seurauksena muuttuvasta rantaimeytyneen pohjaveden määrästä. Saimaan pinnan nousu näyttäisi tuloksien perusteella nostavan CP-pitoisuuksia saha-alueella ja laskevan lähellä vedenottamoa. Pohjaveden pintatietojen perusteella tehdyn tarkastelun mukaan pohjavesi voi kulkeutua sahalta vedenottamolle parhaimmillaan noin vuodessa. Työssä arvioitiin KY-5–liuoksen vuosittaiseksi käyttömääräksi noin 648–970 m3. Allassakkaa arvioitiin syntyneen yhteensä noin 10–31 m3. Pohjaveteen arvioitiin joutuneen toiminnan aikana yhteensä noin 3 000–4 000 kg CP:tä. Kloorifenolit esiintyvät pohjavedessä lähes täysin kloorifenolaatteina. Kloorifenolien hajoaminen ja muuntuminen pohjavedessä on epätodennäköistä. Käsitteellisen mallin mukaan kloorifenolipilaantuman suurimmat riskit aiheutuvat kloorifenolien mahdollisuudesta pilata Pursialan vedenottamon talousvesi. Tällä hetkellä riskejä hallitaan kloorifenolien leviämisen tarkkailulla, sahan ja vedenottamon puolivälissä sijaitsevalla koepumppauksella sekä varautumalla aktiivihiilijauheen syöttöön talousvesiprosessiin. Koepumppauksen avulla on saatu ylös tällä hetkellä noin 69 kg kloorifenoleita. Tutkimuksen perusteella suositeltavimmat riskinhallintatoimet tulevaisuudessa ovat sahalla sijaitseva kunnostuspumppaus, sahan ja vedenottamon väliin sijoittuva suojapumppaus- ja vesiverhoyhdistelmä sekä sahan rannan kautta tapahtuvan rantaimeytymisen estäminen.