37 resultados para SILICON HETEROJUNCTION

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Position sensitive particle detectors are needed in high energy physics research. This thesis describes the development of fabrication processes and characterization techniques of silicon microstrip detectors used in the work for searching elementary particles in the European center for nuclear research, CERN. The detectors give an electrical signal along the particles trajectory after a collision in the particle accelerator. The trajectories give information about the nature of the particle in the struggle to reveal the structure of the matter and the universe. Detectors made of semiconductors have a better position resolution than conventional wire chamber detectors. Silicon semiconductor is overwhelmingly used as a detector material because of its cheapness and standard usage in integrated circuit industry. After a short spread sheet analysis of the basic building block of radiation detectors, the pn junction, the operation of a silicon radiation detector is discussed in general. The microstrip detector is then introduced and the detailed structure of a double-sided ac-coupled strip detector revealed. The fabrication aspects of strip detectors are discussedstarting from the process development and general principles ending up to the description of the double-sided ac-coupled strip detector process. Recombination and generation lifetime measurements in radiation detectors are discussed shortly. The results of electrical tests, ie. measuring the leakage currents and bias resistors, are displayed. The beam test setups and the results, the signal to noise ratio and the position accuracy, are then described. It was found out in earlier research that a heavy irradiation changes the properties of radiation detectors dramatically. A scanning electron microscope method was developed to measure the electric potential and field inside irradiated detectorsto see how a high radiation fluence changes them. The method and the most important results are discussed shortly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The semiconductor particle detectors used at CERN experiments are exposed to radiation. Under radiation, the formation of lattice defects is unavoidable. The defects affect the depletion voltage and leakage current of the detectors, and hence affect on the signal-to-noise ratio of the detectors. This shortens the operational lifetime of the detectors. For this reason, the understanding of the formation and the effects of radiation induced defects is crucial for the development of radiation hard detectors. In this work, I have studied the effects of radiation induced defects-mostly vacancy related defects-with a simulation package, Silvaco. Thus, this work essentially concerns the effects of radiation induced defects, and native defects, on leakage currents in particle detectors. Impurity donor atom-vacancy complexes have been proved to cause insignificant increase of leakage current compared with the trivacancy and divacancy-oxygen centres. Native defects and divacancies have proven to cause some of the leakage current, which is relatively small compared with trivacancy and divacancy-oxygen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Porous silicon (PSi) is a promising material to be utilized in drug delivery formulations. The release rate of the drug compound can be controlled by changing the pore properties and surface chemistry of PSi. The loading of a poorly soluble drug into mesoporous silicon particles enhances its dissolution in the body. The drug loading is based on adsorption. The attainable maximum loaded amount depends on the properties of the drug compound and the PSi material, and on the process conditions. The loading solvent also essentially affects the adsorption process. The loading of indomethacin into PSi particles with varying surface modification was studied. Solvent mixtures were applied in the loading, and the loaded samples were analyzed with thermal analysis methods. The best degree of loading was obtained using a mixture of dichloromethane and methanol. The drug loads varied from 7.7 w-% to 26.8 w-%. A disturbing factor in the loading experiments was the tendency of indomethacin to form solvates with the solvents applied. In addition, the physical form and stability of indomethacin loaded in PSi and silica particles were studied using Raman spectroscopy. In the case of silica, the presence of crystalline drug as well as the polymorph form can be detected, but the method proved to be not applicable for PSi particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work electroluminescence in Si-SiO2 structures has been investigated. Electroluminescence has been recorded in the range of 250-900 nm in a system of electrolyte-insulator-semiconductor at the room temperature. The heating process of electrons in SiO2 was studied and possibility of separation it into two phases has been shown. The nature of luminescence centers and the model of its formation were proposed. This paper also includes consideration of oxide layer formation. Charge transfer mechanisms have been attended as well. The nature of electroluminescence is understood in detail. As a matter of fact, electron traps in silicon are the centers of luminescence. Electroluminescence occurs when electrons move from one trap to another. Thus the radiation of light quantum occurs. These traps appear as a result of the oxide growth. At the same time the bonds deformation of silicon atoms with SiOH groups is not excludes. As a result, dangling bonds are appeared, which are the trapping centers or the centers of luminescence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This Master’s Thesis work reports about electric field distribution in recently developed silicon edgeless detector with a new current terminating structure. This structure enables the essential reduction of insensitive detector area as well as allows separation of the current flowing through the active area from the current flowing at the cut edge. The reliable operation of this detector is strongly needed due to the installation inside LHC. In accordance with formulated problems SEM was used as an investigation tool for collecting the data about electric field distribution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the gas sensing properties of porous silicon-based thin-film optical filters are explored. The effects of surface chemistry on the adsorption and desorption of various gases are studied in detail. Special emphasis is placed on investigating thermal carbonization as a stabilization method for optical sensing applications. Moreover, the possibility of utilizing the increased electrical conductivity of thermally carbonized porous silicon for implementing a multiparametric gas sensor, which would enable simultaneous monitoring of electrical and optical parameters, is investigated. In addition, different porous silicon-based optical filter-structures are prepared, and their properties in sensing applications are evaluated and compared. First and foremost, thermal carbonization is established as a viable method to stabilize porous silicon optical filters for chemical sensing applications. Furthermore, a multiparametric sensor, which can be used for increasing selectivity in gas sensing, is also demonstrated. Methods to improve spectral quality in multistopband mesoporous silicon rugate filters are studied, and structural effects to gas sorption kinetics are evaluated. Finally, the stability of thermally carbonized optical filters in basic environments is found to be superior in comparison to other surface chemistries currently available for porous silicon. The results presented in this thesis are of particular interest for developing novel reliable sensing systems based on porous silicon, e.g., label-free optical biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nowadays, the re-refining of the used lube oils has gained worldwide a lot of attention due to the necessity for added environmental protection and increasingly stringent environmental legislation. One of the parameters determining the quality of the produced base oils is the composition of feedstock. Estimation of the chemical composition of the used oil collected from several European locations showed that the hydrocarbon structure of the motor oil is changed insignificantly during its operation and the major part of the changes is accounted for with depleted oil additives. In the lube oil re-refining industry silicon, coming mainly from antifoaming agents, is recognized to be a contaminant generating undesired solid deposits in various locations in the re-refining units. In this thesis, a particular attention was paid to the mechanism of solid product formation during the alkali treatment process of silicon-containing used lube oils. The transformations of a model siloxane, tetramethyldisiloxane (TMDS), were studied in a batch reactor at industrially relevant alkali treatment conditions (low temperature, short reaction time) using different alkali agents. The reaction mechanism involving solid alkali metal silanolates was proposed. The experimental data obtained demonstrated that the solids were dominant products at low temperature and short reaction time. The liquid products in the low temperature reactions were represented mainly by linear siloxanes. The prolongation of reaction time resulted in reduction of solids, whereas both temperature and time increase led to dominance of cyclic products in the reaction mixture. Experiments with the varied reaction time demonstrated that the concentration of cyclic trimer being the dominant in the beginning of the reaction diminished with time, whereas the cyclic tetramer tended to increase. Experiments with lower sodium hydroxide concentration showed the same effect. In addition, a decrease of alkali agent concentration in the initial reaction mixture accelerated TMDS transformation reactions resulting in solely liquid cyclic siloxanes yields. Comparison of sodium and potassium hydroxides applied as an alkali agent demonstrated that potassium hydroxide was more efficient, since the activation energy in KOH presence was almost 2-fold lower than that for sodium hydroxide containing reaction mixture. Application of potassium hydroxide for TMDS transformation at 100° C with 3 hours reaction time resulted in 20 % decrease of solid yields compared to NaOH-containing mixture. Moreover, TMDS transformations in the presence of sodium silanolate applied as an alkali agent led to formation of only liquid products without formation of the undesired solids. On the basis of experimental data and the proposed reaction mechanism, a kinetic model was developed, which provided a satisfactory description of the experimental results. Suitability of the selected siloxane as a relevant model of industrial silicon-containing compounds was verified by investigation of the commercially available antifoam agent in base-catalyzed conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis properties and influence of modification techniques of porous silicon were studied by Atomic Force Microscope (AFM). This device permits to visualize the surface topography and to study properties of the samples on atomic scale, which was necessary for recent investigation. Samples of porous silicon were obtained by electrochemical etching. Nickel particles were deposited by two methods: electrochemical deposition and extracting from NiCl2 ethanol solution. Sample growth was conducted in Saint-Petersburg State Electrotechnical University, LETI. Kelvin probe force microscopy (KPFM) and Magnetic force microscopy (MFM) were utilized for detailed information about surface properties of the samples. Measurements showed the difference in morphology correlating with initial growth conditions. Submicron size particles were clearly visible on surfaces of the treated samples. Although their nature was not clarified due to limitations of AFM technique. It is expected that surfaces were covered by nanometer scale Ni particles, which can be verified by implication of RAMAN device.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this bachelor's thesis a relay card for capacitance measurements was designed, built and tested. The study was made for the research and development laboratory of VTI Technologies, which manufactures capacitive silicon micro electro mechanical accelerometers and pressure sensors. As the size of the sensors is decreasing the capacitance value of the sensors also decreases. The decreased capacitance causes a need for new and more accurate measurement systems. The technology used in the instrument measuring the capacitance dictates a framework how the relay card should be designed, thus the operating principle of the instrument must be known. To achieve accurate results the measurement instrument and its functions needed to be used correctly. The relay card was designed using printed circuit board design methods that minimize interference coupling to the measurement. The relay card that was designed in this study is modular. It consists of a separate CPU card, which was used to control the add-on cards connected to it. The CPU card was controlled from a computer through a serial bus. Two add-on cards for the CPU card were designed in this study. The first one was the measurement card, which could be used to measure 32 capacitive sensors. The second add-on card was the MUX card, which could be used to switch between two measurement cards. The capacitance measurements carried out through the MUX card and the measurement cards were characterized with a series of test measurements. The test measurement data was then analysed. The relay card design was confirmed to work and offer accurate measurement results up to a measurement frequency of 10 MHz. The length of the measurement cables limited the measurement frequency.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research of condition monitoring of electric motors has been wide for several decades. The research and development at universities and in industry has provided means for the predictive condition monitoring. Many different devices and systems are developed and are widely used in industry, transportation and in civil engineering. In addition, many methods are developed and reported in scientific arenas in order to improve existing methods for the automatic analysis of faults. The methods, however, are not widely used as a part of condition monitoring systems. The main reasons are, firstly, that many methods are presented in scientific papers but their performance in different conditions is not evaluated, secondly, the methods include parameters that are so case specific that the implementation of a systemusing such methods would be far from straightforward. In this thesis, some of these methods are evaluated theoretically and tested with simulations and with a drive in a laboratory. A new automatic analysis method for the bearing fault detection is introduced. In the first part of this work the generation of the bearing fault originating signal is explained and its influence into the stator current is concerned with qualitative and quantitative estimation. The verification of the feasibility of the stator current measurement as a bearing fault indicatoris experimentally tested with the running 15 kW induction motor. The second part of this work concentrates on the bearing fault analysis using the vibration measurement signal. The performance of the micromachined silicon accelerometer chip in conjunction with the envelope spectrum analysis of the cyclic bearing faultis experimentally tested. Furthermore, different methods for the creation of feature extractors for the bearing fault classification are researched and an automatic fault classifier using multivariate statistical discrimination and fuzzy logic is introduced. It is often important that the on-line condition monitoring system is integrated with the industrial communications infrastructure. Two types of a sensor solutions are tested in the thesis: the first one is a sensor withcalculation capacity for example for the production of the envelope spectra; the other one can collect the measurement data in memory and another device can read the data via field bus. The data communications requirements highly depend onthe type of the sensor solution selected. If the data is already analysed in the sensor the data communications are needed only for the results but in the other case, all measurement data need to be transferred. The complexity of the classification method can be great if the data is analysed at the management level computer, but if the analysis is made in sensor itself, the analyses must be simple due to the restricted calculation and memory capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Työssä mallinnettiin kevyesti päällystettyjä aikakauslehtipapereita valmistavan paperikoneen vesikierrot Balas-ohjelman avulla. Mallin avulla selvitettiin paperikoneelle suunniteltujen muutosten vaikutuksia haitallisten aineiden tasoihin, muihin mallinnettuihin parametreihin ja vedenkulutukseen. Mallin luotettavuutta testattiin käytännössä tehdyillä muutoksilla. Vesinäytteistä haitallisina aineina tarkasteltiin lipofiilisten uuteaineiden, kalsiumin, alumiinin, raudan, piin ja sulfaatin pitoisuuksia. Pohjapaperinäytteistä määritettiin lipofiilisten uuteaineiden sekä kalsiumin ja alumiinin pitoisuudet. Paperikoneelle suunniteltuja muutoksia olivat kiekkosuodattimien kirkkaan suodoksen käyttö viiraosan suihkuvetenä ja päällystyksen yhteydessä syntyvän pastajätteen käyttö pohjapaperin täyteaineena. Kirkkaan suodoksen käytön lisäämisellä pyrittiin vähentämään raakaveden käyttöä. Pastajäte sisältää arvokkaita raaka-aineita, jotka kannattaisi hyödyntää paperitehtaalla. Nykyisin pastajäte kuljetetaan läjitysalueelle. Balas-mallin todettiin mallintavan melko luotettavasti liuenneiden haitallisten aineiden pitoisuuksien sekä muista parametreista muun muassa sakeuden ja tuhkapitoisuuden muutoksia. Pastajätteen palautuksen mallinnuksessa haitallisten aineiden pitoisuudet laskivat prosessissa. Tämä toteutui koeajossa, koska jätepastasta suurin osa oli vettä, joka huuhtoi prosessia. Kirkkaan suodoksen käyttö suihkuvetenä ei nostanut epäorgaanisten haitallisten aineiden pitoisuuksia niin paljon kuin malli ennusti. Todennäköisesti haitalliset aineet saostuivat tai poistuivat tuotteen mukana prosessista. Kirkassuodos-koeajon aikana otetussa pohjapaperinäytteessä kiinteän kalsiumin pitoisuus oli 40 % ja kiinteän alumiinin pitoisuus 11 % korkeampi mutta uuteaineiden pitoisuus 20 % alhaisempi kuin referenssipohjapaperissa.