6 resultados para SEED-MEDIATED GROWTH
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary
Resumo:
Sea buckthorn (Hippophaë) berries are ingredients of the Chinese traditional medicine. In addition to China, they are nowadays cultivated for food in several European countries, Russia, Canada, the USA, and Japan. Sea buckthorn berries are a rich source of flavonoids, mainly flavonol glycosides and proanthocyanidins. Depending on the genetic background, growth conditions, and ripeness of the berries, vitamin C concentrations up to over 1 g/100 ml juice, have been reported. Sea buckthorn berries contain inositols and methyl inositols, components of messenger molecules in humans. Sea buckthorn seed oil is rich in essential aplha-linolenic and linoleic acids, whereas the most abundant fatty acids in the berry oil are palmitoleic, palmitic and oleic acids. Other potentially beneficial lipophilic compounds of sea buckthorn seeds and berries include carotenoids, phytosterols, tocopherols and tocotrienols. The effects of sea buckthorn fractions on inflammation, platelet aggregation, oxidation injuries, the liver, skin and mucosa, among others, have been reported. The aim of the thesis work was to investigate the health effects of sea buckthorn berries and oil in humans. The physiological effects of sea buckthorn berries, berry components, and oil have mostly been studied in vitro and in animal models, leaving a demand for more clinical trials. In the first randomized, placebo-controlled trial of this thesis healthy adults consumed 28 g/day of sea buckthorn berries for three months. The main objective was to investigate the effects on the common cold. In addition, effects on other infections, inflammation and circulating lipid markers associated with cardiovascular disease risk were studied. In the second randomized, placebocontrolled trial participants reporting dry eye symptoms consumed 2 g/day of sea buckthorn oil from the seeds and berries for three months. The effects on symptoms and clinical signs of dry eye were monitored. In addition, the effects on circulating markers of inflammation and liver functions were analyzed. Sea buckthorn berries did not affect the common cold or other infections in healthy adults. However, a decrease in serum C-reactive protein was detected, indicating effects on inflammation. Fasting concentrations of serum flavonols, typical to sea buckthorn berry, increased without affecting the circulating total, HDL, LDL cholesterol, or triacylglycerol concentrations. Tear film hyperosmolarity and activation of inflammation at the ocular surface are among the core mechanisms of dry eye. Combined sea buckthorn berry and seed oil attenuated the rise in tear film osmolarity taking place during the cold season. It also positively affected some of the dry eye symptoms. Based on the tear film fatty acid analysis, the effects were not mediated through direct incorporation of sea buckthorn oil fatty acids to tear film lipids. It is likely that the fatty acids, carotenoids, tocopherols and tocotrienols of sea buckthorn oil affected the inflammation of the ocular surface, lacrimal and/or meibomian glands. The effects on the differentiation of meibomian gland cells are also possible. Sea buckthorn oil did not affect the serum concentrations of inflammation markers or liver enzymes investigated. In conclusion, this thesis work suggests positive effects of sea buckthorn berries and oil on inflammation and dry eye, respectively, in humans.
Resumo:
Living organisms manage their resources in well evolutionary-preserved manner to grow and reproduce. Plants are no exceptions, beginning from their seed stage they have to perceive environmental conditions to avoid germination at wrong time or rough soil. Under favourable conditions, plants invest photosynthetic end products in cell and organ growth to provide best possible conditions for generation of offspring. Under natural conditions, however, plants are exposed to a multitude of environmental stress factors, including high light and insufficient light, drought and flooding, various bacteria and viruses, herbivores, and other plants that compete for nutrients and light. To survive under environmental challenges, plants have evolved signaling mechanisms that recognise environmental changes and perform fine-tuned actions that maintain cellular homeostasis. Controlled phosphorylation and dephosphorylation of proteins plays an important role in maintaining balanced flow of information within cells. In this study, I examined the role of protein phosphatase 2A (PP2A) on plant growth and acclimation under optimal and stressful conditions. To this aim, I studied gene expression profiles, proteomes and protein interactions, and their impacts on plant health and survival, taking advantage of the model plant Arabidopsis thaliana and the mutant approach. Special emphasis was made on two highly similar PP2A-B regulatory subunits, B’γ and B’ζ. Promoters of B’γ and B’ζ were found to be similarly active in the developing tissues of the plant. In mature leaves, however, the promoter of B’γ was active in patches in leaf periphery, while the activity of B’ζ promoter was evident in leaf edges. The partially overlapping expression patterns, together with computational models of B’γ and B’ζ within trimeric PP2A holoenzymes suggested that B’γ and B’ζ may competitively bind into similar PP2A trimmers and thus influence each other’s actions. Arabidopsis thaliana pp2a-b’γ and pp2a-b’γζ double mutants showed dwarfish phenotypes, indicating that B’γ and B’ζ are needed for appropriate growth regulation under favorable conditions. However, while pp2a-b’γ displayed constitutive immune responses and appearance of premature yellowings on leaves, the pp2a-b’γζ double mutant supressed these yellowings. More detailed analysis of defense responses revealed that B’γ and B’ζ mediate counteracting effects on salicylic acid dependent defense signalling. Associated with this, B’γ and B’ζ were both found to interact in vivo with CALCIUM DEPENDENT PROTEIN KINASE 1 (CPK1), a crucial element of salicylic acid signalling pathway against pathogens in plants. In addition, B’γ was shown to modulate cellular reactive oxygen species (ROS) metabolism by controlling the abundance of ALTERNATIVE OXIDASE 1A and 1D in mitochondria. PP2A B’γ and B’ζ subunits turned out to play crucial roles in the optimization of plant choices during their development. Taken together, PP2A allows fluent responses to environmental changes, maintenance of plant homeostasis, and grant survivability with minimised cost of redirection of resources from growth to defence.