11 resultados para Regression-based decomposition.
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Due to its non-storability, electricity must be produced at the same time that it is consumed, as a result prices are determined on an hourly basis and thus analysis becomes more challenging. Moreover, the seasonal fluctuations in demand and supply lead to a seasonal behavior of electricity spot prices. The purpose of this thesis is to seek and remove all causal effects from electricity spot prices and remain with pure prices for modeling purposes. To achieve this we use Qlucore Omics Explorer (QOE) for the visualization and the exploration of the data set and Time Series Decomposition method to estimate and extract the deterministic components from the series. To obtain the target series we use regression based on the background variables (water reservoir and temperature). The result obtained is three price series (for Sweden, Norway and System prices) with no apparent pattern.
Resumo:
This Master’s Thesis analyses the effectiveness of different hedging models on BRICS (Brazil, Russia, India, China, and South Africa) countries. Hedging performance is examined by comparing two different dynamic hedging models to conventional OLS regression based model. The dynamic hedging models being employed are Constant Conditional Correlation (CCC) GARCH(1,1) and Dynamic Conditional Correlation (DCC) GARCH(1,1) with Student’s t-distribution. In order to capture the period of both Great Moderation and the latest financial crisis, the sample period extends from 2003 to 2014. To determine whether dynamic models outperform the conventional one, the reduction of portfolio variance for in-sample data with contemporaneous hedge ratios is first determined and then the holding period of the portfolios is extended to one and two days. In addition, the accuracy of hedge ratio forecasts is examined on the basis of out-of-sample variance reduction. The results are mixed and suggest that dynamic hedging models may not provide enough benefits to justify harder estimation and daily portfolio adjustment. In this sense, the results are consistent with the existing literature.
Resumo:
Kolmen eri hitsausliitoksen väsymisikä arvio on analysoitu monimuuttuja regressio analyysin avulla. Regression perustana on laaja S-N tietokanta joka on kerätty kirjallisuudesta. Tarkastellut liitokset ovat tasalevy liitos, krusiformi liitos ja pitkittäisripa levyssä. Muuttujina ovat jännitysvaihtelu, kuormitetun levyn paksuus ja kuormitus tapa. Paksuus effekti on käsitelty uudelleen kaikkia kolmea liitosta ajatellen. Uudelleen käsittelyn avulla on varmistettu paksuus effektin olemassa olo ennen monimuuttuja regressioon siirtymistä. Lineaariset väsymisikä yhtalöt on ajettu kolmelle hitsausliitokselle ottaen huomioon kuormitetun levyn paksuus sekä kuormitus tapa. Väsymisikä yhtalöitä on verrattu ja keskusteltu testitulosten valossa, jotka on kerätty kirjallisuudesta. Neljä tutkimustaon tehty kerättyjen väsymistestien joukosta ja erilaisia väsymisikä arvio metodeja on käytetty väsymisiän arviointiin. Tuloksia on tarkasteltu ja niistä keskusteltu oikeiden testien valossa. Tutkimuksissa on katsottu 2mm ja 6mm symmetristäpitkittäisripaa levyssä, 12.7mm epäsymmetristä pitkittäisripaa, 38mm symmetristä pitkittäisripaa vääntökuormituksessa ja 25mm/38mm kuorman kantavaa krusiformi liitosta vääntökuormituksessa. Mallinnus on tehty niin lähelle testi liitosta kuin mahdollista. Väsymisikä arviointi metodit sisältävät hot-spot metodin jossa hot-spot jännitys on laskettu kahta lineaarista ja epälineaarista ekstrapolointiakäyttäen sekä paksuuden läpi integrointia käyttäen. Lovijännitys ja murtumismekaniikka metodeja on käytetty krusiformi liitosta laskiessa.
Resumo:
Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.
Resumo:
This thesis concentrates on developing a practical local approach methodology based on micro mechanical models for the analysis of ductile fracture of welded joints. Two major problems involved in the local approach, namely the dilational constitutive relation reflecting the softening behaviour of material, and the failure criterion associated with the constitutive equation, have been studied in detail. Firstly, considerable efforts were made on the numerical integration and computer implementation for the non trivial dilational Gurson Tvergaard model. Considering the weaknesses of the widely used Euler forward integration algorithms, a family of generalized mid point algorithms is proposed for the Gurson Tvergaard model. Correspondingly, based on the decomposition of stresses into hydrostatic and deviatoric parts, an explicit seven parameter expression for the consistent tangent moduli of the algorithms is presented. This explicit formula avoids any matrix inversion during numerical iteration and thus greatly facilitates the computer implementation of the algorithms and increase the efficiency of the code. The accuracy of the proposed algorithms and other conventional algorithms has been assessed in a systematic manner in order to highlight the best algorithm for this study. The accurate and efficient performance of present finite element implementation of the proposed algorithms has been demonstrated by various numerical examples. It has been found that the true mid point algorithm (a = 0.5) is the most accurate one when the deviatoric strain increment is radial to the yield surface and it is very important to use the consistent tangent moduli in the Newton iteration procedure. Secondly, an assessment of the consistency of current local failure criteria for ductile fracture, the critical void growth criterion, the constant critical void volume fraction criterion and Thomason's plastic limit load failure criterion, has been made. Significant differences in the predictions of ductility by the three criteria were found. By assuming the void grows spherically and using the void volume fraction from the Gurson Tvergaard model to calculate the current void matrix geometry, Thomason's failure criterion has been modified and a new failure criterion for the Gurson Tvergaard model is presented. Comparison with Koplik and Needleman's finite element results shows that the new failure criterion is fairly accurate indeed. A novel feature of the new failure criterion is that a mechanism for void coalescence is incorporated into the constitutive model. Hence the material failure is a natural result of the development of macroscopic plastic flow and the microscopic internal necking mechanism. By the new failure criterion, the critical void volume fraction is not a material constant and the initial void volume fraction and/or void nucleation parameters essentially control the material failure. This feature is very desirable and makes the numerical calibration of void nucleation parameters(s) possible and physically sound. Thirdly, a local approach methodology based on the above two major contributions has been built up in ABAQUS via the user material subroutine UMAT and applied to welded T joints. By using the void nucleation parameters calibrated from simple smooth and notched specimens, it was found that the fracture behaviour of the welded T joints can be well predicted using present methodology. This application has shown how the damage parameters of both base material and heat affected zone (HAZ) material can be obtained in a step by step manner and how useful and capable the local approach methodology is in the analysis of fracture behaviour and crack development as well as structural integrity assessment of practical problems where non homogeneous materials are involved. Finally, a procedure for the possible engineering application of the present methodology is suggested and discussed.
Resumo:
Machine learning provides tools for automated construction of predictive models in data intensive areas of engineering and science. The family of regularized kernel methods have in the recent years become one of the mainstream approaches to machine learning, due to a number of advantages the methods share. The approach provides theoretically well-founded solutions to the problems of under- and overfitting, allows learning from structured data, and has been empirically demonstrated to yield high predictive performance on a wide range of application domains. Historically, the problems of classification and regression have gained the majority of attention in the field. In this thesis we focus on another type of learning problem, that of learning to rank. In learning to rank, the aim is from a set of past observations to learn a ranking function that can order new objects according to how well they match some underlying criterion of goodness. As an important special case of the setting, we can recover the bipartite ranking problem, corresponding to maximizing the area under the ROC curve (AUC) in binary classification. Ranking applications appear in a large variety of settings, examples encountered in this thesis include document retrieval in web search, recommender systems, information extraction and automated parsing of natural language. We consider the pairwise approach to learning to rank, where ranking models are learned by minimizing the expected probability of ranking any two randomly drawn test examples incorrectly. The development of computationally efficient kernel methods, based on this approach, has in the past proven to be challenging. Moreover, it is not clear what techniques for estimating the predictive performance of learned models are the most reliable in the ranking setting, and how the techniques can be implemented efficiently. The contributions of this thesis are as follows. First, we develop RankRLS, a computationally efficient kernel method for learning to rank, that is based on minimizing a regularized pairwise least-squares loss. In addition to training methods, we introduce a variety of algorithms for tasks such as model selection, multi-output learning, and cross-validation, based on computational shortcuts from matrix algebra. Second, we improve the fastest known training method for the linear version of the RankSVM algorithm, which is one of the most well established methods for learning to rank. Third, we study the combination of the empirical kernel map and reduced set approximation, which allows the large-scale training of kernel machines using linear solvers, and propose computationally efficient solutions to cross-validation when using the approach. Next, we explore the problem of reliable cross-validation when using AUC as a performance criterion, through an extensive simulation study. We demonstrate that the proposed leave-pair-out cross-validation approach leads to more reliable performance estimation than commonly used alternative approaches. Finally, we present a case study on applying machine learning to information extraction from biomedical literature, which combines several of the approaches considered in the thesis. The thesis is divided into two parts. Part I provides the background for the research work and summarizes the most central results, Part II consists of the five original research articles that are the main contribution of this thesis.
Resumo:
Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i
Resumo:
In order to reduce greenhouse emissions from forest degradation and deforestation the international programme REDD (Reducing Emissions from Deforestation and forest Degradation) was established in 2005 by the United Nations Framework Convention on Climate Change (UNFCCC). This programme is aimed to financially reward to developing countries for any emissions reductions. Under this programm the project of setting up the payment system in Nepal was established. This project is aimed to engage local communities in forest monitoring. The major objective of this thesis is to compare and verify data obtained from di erect sources - remotely sensed data, namely LiDAR and field sample measurements made by two groups of researchers using two regression models - Sparse Bayesian Regression and Bayesian Regression with Orthogonal Variables.
Resumo:
Water treatment using photocatalysis has gained extensive attention in recent years. Photocatalysis is promising technology from green chemistry point of view. The most widely studied and used photocatalyst for decomposition of pollutants in water under ultraviolet irradiation is TiO2 because it is not toxic, relatively cheap and highly active in various reactions. Within this thesis unmodified and modified TiO2 materials (powders and thin films) were prepared. Physico-chemical properties of photocatalytic materials were characterized with UV-visible spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES), ellipsometry, time-of-flight secondary ion mass spectrometry (ToF-SIMS), Raman spectroscopy, goniometry, diffuse reflectance measurements, thermogravimetric analysis (TGA) and nitrogen adsorption/desorption. Photocatalytic activity of prepared samples in aqueous environment was tested using model compounds such as phenol, formic acid and metazachlor. Also purification of real pulp and paper wastewater effluent was studied. Concentration of chosen pollutants was measured with high pressure liquid chromatography (HPLC). Mineralization and oxidation of organic contaminants were monitored with total organic carbon (TOC) and chemical oxygen demand (COD) analysis. Titanium dioxide powders prepared via sol-gel method and doped with dysprosium and praseodymium were photocatalytically active for decomposition of metazachlor. The highest degradation rate of metazachlor was observed when Pr-TiO2 treated at 450ºC (8h) was used. The photocatalytic LED-based treatment of wastewater effluent from plywood mill using commercially available TiO2 was demonstrated to be promising post-treatment method (72% of COD and 60% of TOC was decreased after 60 min of irradiation). The TiO2 coatings prepared by atomic layer deposition technique on aluminium foam were photocatalytically active for degradation of formic and phenol, however suppression of activity was observed. Photocatalytic activity of TiO2/SiO2 films doped with gold bipyramid-like nanoparticles was about two times higher than reference, which was not the case when gold nanospheres were used.