24 resultados para Ranking, Stock Exchange New York
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Various researches in the field of econophysics has shown that fluid flow have analogous phenomena in financial market behavior, the typical parallelism being delivered between energy in fluids and information on markets. However, the geometry of the manifold on which market dynamics act out their dynamics (corporate space) is not yet known. In this thesis, utilizing a Seven year time series of prices of stocks used to compute S&P500 index on the New York Stock Exchange, we have created local chart to the corporate space with the goal of finding standing waves and other soliton like patterns in the behavior of stock price deviations from the S&P500 index. By first calculating the correlation matrix of normalized stock price deviations from the S&P500 index, we have performed a local singular value decomposition over a set of four different time windows as guides to the nature of patterns that may emerge. I turns out that in almost all cases, each singular vector is essentially determined by relatively small set of companies with big positive or negative weights on that singular vector. Over particular time windows, sometimes these weights are strongly correlated with at least one industrial sector and certain sectors are more prone to fast dynamics whereas others have longer standing waves.
Resumo:
Kirje 24.8.1932
Resumo:
Kirje
Resumo:
Kirje 14.7.1932
Resumo:
Bodies, Borders, Crossings -ryhmänäyttely, Covernors Island rantakasarmi, kuraattorit Leena-Maija Rossi ja Kari Soinio, tuottaja Frame ja Suomen New Yorkin kulttuuri-instituutti. Esillä videoteos Miss Kong.
Resumo:
The behavioural finance literature expects systematic and significant deviations from efficiency to persist in securities markets due to behavioural and cognitive biases of investors. These behavioural models attempt to explain the coexistence of intermediate-term momentum and long-term reversals in stock returns based on the systematic violations of rational behaviour of investors. The study investigates the anchoring bias of investors and the profitability of the 52-week momentum strategy (GH henceforward). The relatively highly volatile OMX Helsinki stock exchange is a suitable market for examining the momentum effect, since international investors tend to realise their positions first from the furthest security markets by the time of market turbulence. Empirical data is collected from Thomson Reuters Datastream and the OMX Nordic website. The objective of the study is to provide a throughout research by formulating a self-financing GH momentum portfolio. First, the seasonality of the strategy is examined by taking the January effect into account and researching abnormal returns in long-term. The results indicate that the GH strategy is subject to significantly negative revenues in January, but the strategy is not prone to reversals in long-term. Then the predictive proxies of momentum returns are investigated in terms of acquisition prices and 52-week high statistics as anchors. The results show that the acquisition prices do not have explanatory power over the GH strategy’s abnormal returns. Finally, the efficacy of the GH strategy is examined after taking transaction costs into account, finding that the robust abnormal returns remain statistically significant despite the transaction costs. As a conclusion, the relative distance between a stock’s current price and its 52-week high statistic explains the profits of momentum investing to a high degree. The results indicate that intermediateterm momentum and long-term reversals are separate phenomena. This presents a challenge to current behavioural theories, which model these aspects of stock returns as subsequent components of how securities markets respond to relevant information.
Resumo:
This thesis studies the predictability of market switching and delisting events from OMX First North Nordic multilateral stock exchange by using financial statement information and market information from 2007 to 2012. This study was conducted by using a three stage process. In first stage relevant theoretical framework and initial variable pool were constructed. Then, explanatory analysis of the initial variable pool was done in order to further limit and identify relevant variables. The explanatory analysis was conducted by using self-organizing map methodology. In the third stage, the predictive modeling was carried out with random forests and support vector machine methodologies. It was found that the explanatory analysis was able to identify relevant variables. The results indicate that the market switching and delisting events can be predicted in some extent. The empirical results also support the usability of financial statement and market information in the prediction of market switching and delisting events.