7 resultados para Ranging signals
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Tulevaisuuden hahmottamisen merkitys heikkojen signaalien avulla on korostunut viime vuosien aikana merkittävästi,koska yrityksen liiketoimintaympäristössä tapahtuvia muutoksia on ollut yhä vaikeampaa ennustaa historian perusteella. Liiketoimintaympäristössä monien muutoksien merkkejä on ollut nähtävissä, mutta niitä on ollut vaikea havaita. Heikkoja signaaleja tunnistamalla ja keräämällä sekä reagoimalla tilanteeseen riittävän ajoissa, on mahdollista saavuttaa ylivoimaista kilpailuetua. Kirjallisuustutkimus keskittyy heikkojen signaalien tunnistamisen haasteisiin liiketoimintaympäristöstä, signaalien ja informaation kehittymiseen sekä informaation hallintaan organisaatiossa. Kiinnostus näihin perustuu tarpeeseen määritellä heikkojen signaalien tunnistamiseen vaadittava prosessi, jonka avulla heikot signaalit voidaan huomioida M-real Oyj:n päätöksenteossa. Kirjallisuustutkimus osoittaa selvästi sen, että heikkoja signaaleita on olemassa ja niitä pystytään tunnistamaan liiketoimintaympäristöstä. Signaaleja voidaan rikastuttaa yrityksessä olevalla tietämyksellä ja hyödyntää edelleen päätöksenteossa. Vertailtaessa sekä kirjallisuustutkimusta että empiiristä tutkimusta tuli ilmi selkeästi tiedon moninaisuus; määrä,laatu ja tiedonsaannin oikea-aikaisuus päätöksenteossa. Tutkimuksen aikana kehittyi prosessimalli tiedon suodattamiselle, luokittelulle ja heikkojen signaalien tunnistamiselle. Työn edetessä prosessimalli kehittyi osaksi tässä työssä kehitettyä kokonaisuutta 'Weak Signal Capturing' -työkalua. Monistamalla työkalua voidaan kerätä heikkoja signaaleja eri M-realin liiketoiminnan osa-alueilta. Tietoja systemaattisesti kokoamalla voidaan kartoittaa tulevaisuutta koko M-realille.
Resumo:
Main goal of this thesis was to implement a localization system which uses sonars and WLAN intensity maps to localize an indoor mobile robot. A probabilistic localization method, Monte Carlo Localization is used in localization. Also the theory behind probabilistic localization is explained. Two main problems in mobile robotics, path tracking and global localization, are solved in this thesis. Implemented system can achieve acceptable performance in path tracking. Global localization using WLAN received signal strength information is shown to provide good results, which can be used to localize the robot accurately, but also some bad results, which are no use when trying to localize the robot to the correct place. Main goal of solving ambiguity in office like environment is achieved in many test cases.
Resumo:
After the restructuring process of the power supply industry, which for instance in Finland took place in the mid-1990s, free competition was introduced for the production and sale of electricity. Nevertheless, natural monopolies are found to be the most efficient form of production in the transmission and distribution of electricity, and therefore such companies remained franchised monopolies. To prevent the misuse of the monopoly position and to guarantee the rights of the customers, regulation of these monopoly companies is required. One of the main objectives of the restructuring process has been to increase the cost efficiency of the industry. Simultaneously, demands for the service quality are increasing. Therefore, many regulatory frameworks are being, or have been, reshaped so that companies are provided with stronger incentives for efficiency and quality improvements. Performance benchmarking has in many cases a central role in the practical implementation of such incentive schemes. Economic regulation with performance benchmarking attached to it provides companies with directing signals that tend to affect their investment and maintenance strategies. Since the asset lifetimes in the electricity distribution are typically many decades, investment decisions have far-reaching technical and economic effects. This doctoral thesis addresses the directing signals of incentive regulation and performance benchmarking in the field of electricity distribution. The theory of efficiency measurement and the most common regulation models are presented. The chief contributions of this work are (1) a new kind of analysis of the regulatory framework, so that the actual directing signals of the regulation and benchmarking for the electricity distribution companies are evaluated, (2) developing the methodology and a software tool for analysing the directing signals of the regulation and benchmarking in the electricity distribution sector, and (3) analysing the real-life regulatory frameworks by the developed methodology and further develop regulation model from the viewpoint of the directing signals. The results of this study have played a key role in the development of the Finnish regulatory model.
Resumo:
Current hearing-assistive technology performs poorly in noisy multi-talker conditions. The goal of this thesis was to establish the feasibility of using EEG to guide acoustic processing in such conditions. To attain this goal, this research developed a model via the constructive research method, relying on literature review. Several approaches have revealed improvements in the performance of hearing-assistive devices under multi-talker conditions, namely beamforming spatial filtering, model-based sparse coding shrinkage, and onset enhancement of the speech signal. Prior research has shown that electroencephalography (EEG) signals contain information that concerns whether the person is actively listening, what the listener is listening to, and where the attended sound source is. This thesis constructed a model for using EEG information to control beamforming, model-based sparse coding shrinkage, and onset enhancement of the speech signal. The purpose of this model is to propose a framework for using EEG signals to control sound processing to select a single talker in a noisy environment containing multiple talkers speaking simultaneously. On a theoretical level, the model showed that EEG can control acoustical processing. An analysis of the model identified a requirement for real-time processing and that the model inherits the computationally intensive properties of acoustical processing, although the model itself is low complexity placing a relatively small load on computational resources. A research priority is to develop a prototype that controls hearing-assistive devices with EEG. This thesis concludes highlighting challenges for future research.