63 resultados para Radio signal estimation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

40.00% 40.00%

Publicador:

Resumo:

General Packet Radio Service (GPRS) mahdollistaa pakettimuotoisen tiedonsiirron GSM-verkossa. Se tarjoaa yhteyden pakettidataverkkoihin, nostaen samalla tiedonsiirtonopeutta radiorajapinnassa. Radioresurssit ovat varattuna vain silloin kun on jotain lähetettävää, tehden täten radioresurssien käytön paljon tehokkaammaksi. Tämä diplomityö keskittyy GPRS protokollaan ja erityisesti sen datapinossa olevaan Radio Link Control (RLC) kerrokseen. RLC-kerros huolehtii GPRS- puhelimen ja tukiaseman välisen yhteyden luotettavuudesta. Työn tavoitteena on tutkia RLC-kerroksen toiminnallisuutta ja sen luotettavuutta heikossa kentässä, sekä selvittää heikon kentän vaikutusta uudelleenlähetyksiin. Työn tuloksena saadaan arvio signaalin voimakkuuden sekä uudelleen lähetysten vaikutuksesta GPRS:n datansiirtonopeuteen. Tämä työ käsittelee myös lyhyesti GSM-järjestelmää, koska lukijan on näin helpompaa ymmärtää myös GPRS-järjestelmän vaatimia teknisiä muutoksia. Tämä diplomityö on tehty osana Nokia Matkapuhelimet Oyj:ssä käynnissä olevaa GPRS tuotekehitysprojektia. Työn tuloksia käytetään testauksen tukena ja niitä on käytetty apuna RLC-kerroksen luotettavuustestauksen suunnittelussa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bone strain plays a major role as the activation signal for the bone (re)modeling process, which is vital for keeping bones healthy. Maintaining high bone mineral density reduces the chances of fracture in the event of an accident. Numerous studies have shown that bones can be strengthened with physical exercise. Several hypotheses have asserted that a stronger osteogenic (bone producing) effect results from dynamic exercise than from static exercise. These previous studies are based on short-term empirical research, which provide the motivation for justifying the experimental results with a solid mathematical background. The computer simulation techniques utilized in this work allow for non-invasive bone strain estimation during physical activity at any bone site within the human skeleton. All models presented in the study are threedimensional and actuated by muscle models to replicate the real conditions accurately. The objective of this work is to determine and present loading-induced bone strain values resulting from physical activity. It includes a comparison of strain resulting from four different gym exercises (knee flexion, knee extension, leg press, and squat) and walking, with the results reported for walking and jogging obtained from in-vivo measurements described in the literature. The objective is realized primarily by carrying out flexible multibody dynamics computer simulations. The dissertation combines the knowledge of finite element analysis and multibody simulations with experimental data and information available from medical field literature. Measured subject-specific motion data was coupled with forward dynamics simulation to provide natural skeletal movement. Bone geometries were defined using a reverse engineering approach based on medical imaging techniques. Both computed tomography and magnetic resonance imaging were utilized to explore modeling differences. The predicted tibia bone strains during walking show good agreement with invivo studies found in the literature. Strain measurements were not available for gym exercises; therefore, the strain results could not be validated. However, the values seem reasonable when compared to available walking and running invivo strain measurements. The results can be used for exercise equipment design aimed at strengthening the bones as well as the muscles during workout. Clinical applications in post fracture recovery exercising programs could also be the target. In addition, the methodology introduced in this study, can be applied to investigate the effect of weightlessness on astronauts, who often suffer bone loss after long time spent in the outer space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puhe

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Haastattelu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puhe

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Puhe

Relevância:

20.00% 20.00%

Publicador: