7 resultados para Radiation-Protective Agents

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main aim of this thesis is to study the effect of pigments on the weathering properties of wood-polypropylene composites (WPC). The studied properties are color change, water absorption, thickness swelling and Charpy impact strength. The impact of weathering and UV exposure on WPCs was studied by using pigments and minerals as protective agents. The study shows that the pigments and/or mineral fillers can be used to improve the weathering properties of WPCs. The effect of pigments was found to vary with the type of pigment and the method of weathering. The black pigment, an inorganic carbon black master-batch, was found to be the most effective one in reduction of the discoloration of WPCs. By preventing discoloration, and further reducing the degradation of the surface of the WPC, the pigments were found to reduce the decrease in the impact strength after weathering. As well as UV protection, the moisture resistance is a significant factor affecting the durability of WPCs. The addition of mineral fillers was found to improve the moisture-related properties, such as water absorption and thickness swelling, of WPC significantly. According to the findings, addition of pigments and mineral fillers to wood-polypropylene composites appears to be beneficial: color stability and moisture resistance can be enhanced especially in outdoor weathering. The combined effect of black pigment (carbon black master-batch) and wollastonite as a mineral filler was found to bring about the most effective properties against weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkyl ketene dimers (AKD) are effective and highly hydrophobic sizing agents for the internal sizing of alkaline papers, but in some cases they may form deposits on paper machines and copiers. In addition, alkenyl succinic anhydrides (ASA)- based sizing agents are highly reactive, producing on-machine sizing, but under uncontrolled wet end conditions the hydrolysis of ASA may cause problems. This thesis aims at developing an improved ketene dimer based sizing agent that would have a lower deposit formation tendency on paper machines and copiers than a traditional type of AKD. The aim is also to improve the ink jet printability of a AKD sized paper. The sizing characteristics ofketene dimers have been compared to those of ASA. A lower tendency of ketene dimer deposit formation was shown in paper machine trials and in printability tests when branched fatty acids were used in the manufacture of a ketene dimer basedsizing agent. Fitting the melting and solidification temperature of a ketene dimer size to the process temperature of a paper machine or a copier contributes to machine cleanliness. A lower hydrophobicity of the paper sized with branched ketene dimer compared to the paper sized with traditional AKD was discovered. However, the ink jet print quality could be improved by the use of a branched ketene dimer. The branched ketene dimer helps in balancing the paper hydrophobicity for both black and color printing. The use of a high amount of protective colloidin the emulsification was considered to be useful for the sizing performance ofthe liquid type of sizing agents. Similar findings were indicated for both the branched ketene dimer and ASA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper is devoted to the results of experimental research undertaken into photocatalytical oxidation (PCO) of aqueous solutions of de-icing agents and aqueous extract of jet fuel. The report consists of introduction, literature review, description of materials and methods, discussion of results and conclusions. TiO2 was selected as a photocatalyst for the experiments with synthetic solutions of ethylene glycol, 2-ethoxyethanol and aqueous extract of jet fuel. To explain the PCO mechanisms affecting certain behaviour of de-icing agent under distinctive conditions, the following factors were studied: the impact of initial concentration of pollutant, the role of pH, the presence of tert-butanol as OH·-radicals scavenger and mineral admixtures. PCO under solar radiation performed in two ways: catalysed by irradiated TiO2 slurry or by TiO2 attached to buoyant hollow glass micro-spheres. Special attention was paid to the energy-saving PCO with reduced intensity mixing of the slurry. The effect of PCO was assessed by determination of residual chemical oxygen demand of solution (COD) and by measuring of concentration of glycols. The PCO process efficiency was assumed to be dependent on the TiO2 suspension fractional composition. Thus, the following effects of solutions’ media were viewed: presence of organic admixtures, pH influence, mixing mode during the PCO. The effects of mineral admixtures - Ca2+, Fe3+/2+, Mn2+, SO42- - that are often present in natural and wastewater systems or produced during the degradation of organic pollutants and which can affect the rate of PCO of de-icing agents, were also investigated.