13 resultados para Radiation Genetics

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis describes the development of advanced silicon radiation detectors and their characterization by simulations, used in the work for searching elementary particles in the European Organization for Nuclear Research, CERN. Silicon particle detectors will face extremely harsh radiation in the proposed upgrade of the Large Hadron Collider, the future high-energy physics experiment Super-LHC. The increase in the maximal fluence and the beam luminosity up to 1016 neq / cm2 and 1035 cm-2s-1 will require detectors with a dramatic improvement in radiation hardness, when such a fluence will be far beyond the operational limits of the present silicon detectors. The main goals of detector development concentrate on minimizing the radiation degradation. This study contributes mainly to the device engineering technology for developing more radiation hard particle detectors with better characteristics. Also the defect engineering technology is discussed. In the nearest region of the beam in Super-LHC, the only detector choice is 3D detectors, or alternatively replacing other types of detectors every two years. The interest in the 3D silicon detectors is continuously growing because of their many advantages as compared to conventional planar detectors: the devices can be fully depleted at low bias voltages, the speed of the charge collection is high, and the collection distances are about one order of magnitude less than those of planar technology strip and pixel detectors with electrodes limited to the detector surface. Also the 3D detectors exhibit high radiation tolerance, and thus the ability of the silicon detectors to operate after irradiation is increased. Two parameters, full depletion voltage and electric field distribution, is discussed in more detail in this study. The full depletion of the detector is important because the only depleted area in the detector is active for the particle tracking. Similarly, the high electric field in the detector makes the detector volume sensitive, while low-field areas are non-sensitive to particles. This study shows the simulation results of full depletion voltage and the electric field distribution for the various types of 3D detectors. First, the 3D detector with the n-type substrate and partial-penetrating p-type electrodes are researched. A detector of this type has a low electric field on the pixel side and it suffers from type inversion. Next, the substrate is changed to p-type and the detectors having electrodes with one doping type and the dual doping type are examined. The electric field profile in a dual-column 3D Si detector is more uniform than that in the single-type column 3D detector. The dual-column detectors are the best in radiation hardness because of their low depletion voltages and short drift distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although abundant in the number of individuals, the Atlantic salmon may be considered as a threatened species in many areas of its native distribution range. Human activities such as building of power plant dams, offshore overfishing, pollution, clearing of riverbeds for timber floating and badly designed stocking regimes have diminished the distribution of Atlantic salmon. As a result of this, many of the historical populations both in Europe and northern America have gone extinct or are severely depressed. In fact, only 1% of Atlantic salmon existing today are of natural origin, the rest being farmed salmon. All of this has lead to a vast amount of research and many restoration programmes aiming to bring Atlantic salmon back to rivers from where it has vanished. However, many of the restoration programmes conducted thus far have been unsuccessful due to inadequate scientific research or lack of its implementation, highlighting the fact that more research is needed to fully understand the biology of this complex species. The White and Barents Seas in northwest Russia are among the last regions in Europe where Atlantic salmon populations are still stable, thus forming an important source of biodiversity for the entire European region. Salmon stocks from this area are also of immense economic and social importance for the local people in the form of fishing tourism. The main aim of this thesis was to elucidate the post-glacial history and population genetic structure of north European and particularly northwest Russian Atlantic salmon, both of which are aspects of great importance for the management and conservation of the species. Throughout the whole thesis, these populations were studied by utilizing microsatellites as the main molecular tool. One of the most important discoveries of the thesis was the division of Atlantic salmon from the White and Barents Seas into four separate clusters, which has not been observed in previous studies employing nuclear markers although is supported by mtDNA studies. Populations from the western Barents Sea clustered together with the northeast Atlantic populations into a clearly distinguishable group while populations from the White Sea and eastern Barents Sea were separated into three additional groups. This has important conservation implications as this thesis clearly indicates that conservation of populations from all of the observed clusters is warranted in order to conserve as much of the genetic diversity as possible in this area. The thesis also demonstrates how differences in population life histories within a species, migratory behaviour in this case, and in their phylogeographic origin affect the genetic characteristics of populations, namely diversity and divergence levels. The anadromous populations from the Atlantic Ocean, White Sea and Barents Sea possessed higher levels of genetic diversity than the anadromous populations form the Baltic Sea basin. Among the non-anadromous populations the result was the opposite: the Baltic freshwater populations were more variable. This emphasises the importance of taking the life history of a population into consideration when developing conservation strategies: due to the limited possibilities for new genetic diversity to be generated via gene flow, it is expected that freshwater Atlantic salmon populations would be more vulnerable to extinction following a population crash and thus deserve a high conservation status. In the last chapter of this thesis immune relevant marker loci were developed and screened for signatures of natural selection along with loci linked to genes with other functions or no function at all. Also, a novel landscape genomics method, which combines environmental information with molecular data, was employed to investigate whether immune relevant markers displayed significant correlations to various environmental variables more frequently than other loci. Indications of stronger selection pressure among immune-relevant loci compared to non-immune relevant EST-linked loci was found but further studies are needed to evaluate whether it is a common phenomenon in Atlantic salmon.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hedelmättömyyttä aiheuttavan siittiöiden puolihäntävian molekyyligenetiikka Suomalaisissa Yorkshire karjuissa yleistyi 1990-luvun lopulla autosomaalisesti ja resessiivisesti periytyvä hedelmättömyyttä aiheuttava siittiöiden puolihäntävika (ISTS, immotile short tail sperm). Sairaus aiheuttaa normaalia lyhyemmän ja täysin liikkumattoman siittiön hännän muodostuksen. Muita oireita sairailla karjuilla ei ole havaittu ja emakot ovat oireettomia. Tämän tutkimuksen tarkoituksena oli kartoittaa siittiöiden puolihäntävian aiheuttava geenivirhe ja kehittää DNA-testi markkeri- ja geeniavusteiseen valintaan. Koko genomin kartoituksessa vian aiheuttava alue paikannettiin sian kromosomiin 16. Paikannuksen perusteella kahden geenimerkin haplotyyppi kehitettiin käytettäväksi markkeri-avusteisessa valinnassa. Sairauteen kytkeytyneen alueen hienokartoitusta jatkettiin geenitestin kehittämiseksi kantajadiagnostiikkaan. Vertailevalla kartoituksella oireeseen kytkeytynyt alue paikannettiin 2 cM:n alueelle ihmisen kromosomiin viisi (5p13.2). Tällä alueella sijaitsevia geenejä vastaavista sian sekvensseistä löydetyn muuntelun perusteella voitiin tarkentaa sairauteen kytkeytyneitä haplotyyppejä. Haplotyyppien perusteella puolihäntäoireeseen kytkeytynyt alue rajattiin kahdeksan geenin alueelle ihmisen geenikartalla. Alueelle paikannetun kandidaattigeenin (KPL2) sekvensointi paljasti introniin liittyneen liikkuvan DNA-sekvenssin, Line-1 retroposonin. Tämä retroposoni muuttaa geenin silmikointia siten, että sitä edeltävä eksoni jätetään pois tai myös osa introni- ja inserttisekvenssiä liitetään geenin mRNA tuotteeseen. Molemmissa tapauksissa tuloksena on lyhentynyt KPL2 proteiini. Tähän retroposoni-inserttiin perustuva geenitesti on ollut sianjalostajien käytössä vuodesta 2006. KPL2 geenin ilmenemisen tarkastelu sialla ja hiirellä paljasti useita kudosspesifisiä silmikointimuotoja. KPL2 geenin pitkä muoto ilmenee pääasiassa vain kiveksessä, mikä selittää geenivirheen aiheuttamat erityisesti siittiön kehitykseen liittyvät oireet. KPL2 proteiinin ilmeneminen hiiren siittiön hännän kehityksen aikana ja mahdollinen yhteistoiminta IFT20 proteiinin kanssa viittaavat tehtävään proteiinien kuljetuksessa siittiön häntään. Mahdollisen kuljetustehtävän lisäksi KPL2 saattaa toimia myös siittiön hännän rakenneosana, koska se paikannettiin valmiin siittiön hännän keskiosaan. Lisäksi KPL2 proteiini saattaa myös toimia Golgin laitteessa sekä Sertolin solujen ja spermatidien liitoksissa, mutta nämä havainnot kuitenkin vaativat lisätutkimuksia. Tämän tutkimuksen tulokset osoittavat, että KPL2 geeni on tärkeä siittiön hännän kehitykselle ja sen rakennemuutos aiheuttaa siittiöiden puolihäntäoireen suomalaisilla Yorkshire karjuilla. KPL2 proteiinin ilmeneminen ja paikannus siittiön kehityksen aikana antaa viitteitä proteiinin toiminnasta. Koska KPL2 geenisekvenssi on erittäin konservoitunut, nämä tulokset tuovat uutta tietoa kaikkien nisäkkäiden siittiöiden kehitykseen ja urosten hedelmättömyyteen syihin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL, OMIM #125310) is an inherited vascular disease. The main symptoms include migraineous headache, recurrent strokes and progressive cognitive impairment. CADASIL is caused by mutations in the NOTCH3 gene which result in degeneration of vascular smooth muscle cells, arteriolar stenosis and impaired cerebral blood flow. The aims of this study were assessment of the genetic background of Finnish and Swedish CADASIL patients, analysis of genetic and environmental factors that may influence the phenotype, and identification of the optimal diagnostic strategy. The majority of Finnish CADASIL patients carry the p.Arg133Cys mutation. Haplotype analysis of 18 families revealed a region of linkage disequilibrium around the NOTCH3 locus, which is evidence for a founder effect and a common ancestral mutation. Despite the same mutational background, the clinical course of CADASIL is highly variable between and even within families. The association of several genetic factors with the phenotypic variation was investigated in 120 CADASIL patients. Apolipoprotein E allele 4 was associated with earlier occurrence of strokes, especially in younger patients. Study of a pair of monozygotic twins with CADASIL revealed environmental factors which may influence the phenotype, i.e. smoking, statin medication and physical activity. Knowledge of these factors is useful, since life-style choices may influence the disease progression. The clinical CADASIL diagnosis can be confirmed by detection of either the NOTCH3 mutation or granular osmiophilic material by electron microscopy in skin biopsy, although the sensitivity estimates have been contradictory. Comparison of these two methods in a group of 131 diagnostic cases from Finland, Sweden and France demonstrated that both methods are highly sensitive and reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic diversity is one of the levels of biodiversity that the World Conservation Union (IUCN) has recognized as being important to preserve. This is because genetic diversity is fundamental to the future evolution and to the adaptive flexibility of a species to respond to the inherently dynamic nature of the natural world. Therefore, the key to maintaining biodiversity and healthy ecosystems is to identify, monitor and maintain locally-adapted populations, along with their unique gene pools, upon which future adaptation depends. Thus, conservation genetics deals with the genetic factors that affect extinction risk and the genetic management regimes required to minimize the risk. The conservation of exploited species, such as salmonid fishes, is particularly challenging due to the conflicts between different interest groups. In this thesis, I conduct a series of conservation genetic studies on primarily Finnish populations of two salmonid fish species (European grayling, Thymallus thymallus, and lake-run brown trout, Salmo trutta) which are popular recreational game fishes in Finland. The general aim of these studies was to apply and develop population genetic approaches to assist conservation and sustainable harvest of these populations. The approaches applied included: i) the characterization of population genetic structure at national and local scales; ii) the identification of management units and the prioritization of populations for conservation based on evolutionary forces shaping indigenous gene pools; iii) the detection of population declines and the testing of the assumptions underlying these tests; and iv) the evaluation of the contribution of natural populations to a mixed stock fishery. Based on microsatellite analyses, clear genetic structuring of exploited Finnish grayling and brown trout populations was detected at both national and local scales. Finnish grayling were clustered into three genetically distinct groups, corresponding to northern, Baltic and south-eastern geographic areas of Finland. The genetic differentiation among and within population groups of grayling ranged from moderate to high levels. Such strong genetic structuring combined with low genetic diversity strongly indicates that genetic drift plays a major role in the evolution of grayling populations. Further analyses of European grayling covering the majority of the species’ distribution range indicated a strong global footprint of population decline. Using a coalescent approach the beginning of population reduction was dated back to 1 000-10 000 years ago (ca. 200-2 000 generations). Forward simulations demonstrated that the bottleneck footprints measured using the M ratio can persist within small populations much longer than previously anticipated in the face of low levels of gene flow. In contrast to the M ratio, two alternative methods for genetic bottleneck detection identified recent bottlenecks in six grayling populations that warrant future monitoring. Consistent with the predominant role of random genetic drift, the effective population size (Ne) estimates of all grayling populations were very low with the majority of Ne estimates below 50. Taken together, highly structured local populations, limited gene flow and the small Ne of grayling populations indicates that grayling populations are vulnerable to overexploitation and, hence, monitoring and careful management using the precautionary principles is required not only in Finland but throughout Europe. Population genetic analyses of lake-run brown trout populations in the Inari basin (northernmost Finland) revealed hierarchical population structure where individual populations were clustered into three population groups largely corresponding to different geographic regions of the basin. Similar to my earlier work with European grayling, the genetic differentiation among and within population groups of lake-run brown trout was relatively high. Such strong differentiation indicated that the power to determine the relative contribution of populations in mixed fisheries should be relatively high. Consistent with these expectations, high accuracy and precision in mixed stock analysis (MSA) simulations were observed. Application of MSA to indigenous fish caught in the Inari basin identified altogether twelve populations that contributed significantly to mixed stock fisheries with the Ivalojoki river system being the major contributor (70%) to the total catch. When the contribution of wild trout populations to the fisheries was evaluated regionally, geographically nearby populations were the main contributors to the local catches. MSA also revealed a clear separation between the lower and upper reaches of Ivalojoki river system – in contrast to lower reaches of the Ivalojoki river that contributed considerably to the catch, populations from the upper reaches of the Ivalojoki river system (>140 km from the river mouth) did not contribute significantly to the fishery. This could be related to the available habitat size but also associated with a resident type life history and increased cost of migration. The studies in my thesis highlight the importance of dense sampling and wide population coverage at the scale being studied and also demonstrate the importance of critical evaluation of the underlying assumptions of the population genetic models and methods used. These results have important implications for conservation and sustainable fisheries management of Finnish populations of European grayling and brown trout in the Inari basin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planar, large area, position sensitive silicon detectors are widely utilized in high energy physics research and in medical, computed tomography (CT). This thesis describes author's research work relating to development of such detector components. The key motivation and objective for the research work has been the development of novel, position sensitive detectors improving the performance of the instruments they are intended for. Silicon strip detectors are the key components of barrel-shaped tracking instruments which are typically the innermost structures of high energy physics experimental stations. Particle colliders such as the former LEP collider or present LHC produce particle collisions and the silicon strip detector based trackers locate the trajectories of particles emanating from such collisions. Medical CT has become a regular part of everyday medical care in all developed countries. CT scanning enables x-ray imaging of all parts of the human body with an outstanding structural resolution and contrast. Brain, chest and abdomen slice images with a resolution of 0.5 mm are possible and latest CT machines are able to image whole human heart between heart beats. The two application areas are presented shortly and the radiation detection properties of planar silicon detectors are discussed. Fabrication methods and preamplifier electronics of the planar detectors are presented. Designs of the developed, large area silicon detectors are presented and measurement results of the key operating parameters are discussed. Static and dynamic performance of the developed silicon strip detectors are shown to be very satisfactory for experimental physics applications. Results relating to the developed, novel CT detector chips are found to be very promising for further development and all key performance goals are met.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main goals in current evolutionary biology research is to identify genes behind adaptive phenotypic variations. The advances in genomic technologies have made it possible to identify genetic loci behind these variations, also concerning non-model species. This thesis investigates the genetics of the behaviour and other adaptive traits of the nine-spined stickleback (Pungitius pungitius) through the application of different genetic approaches. Fennoscandian nine-spined stickleback populations express large phenotypical differences especially in behaviour, life –history traits and morphology. However the underlying genetic bases for these phenotypical differences have not been studied in detail. The results of the project will lay the foundation for further genetics studies and provide valuable information for our understanding of the genetics of the adaptive divergence of the nine-spined stickleback. A candidate gene approach was used to develop microsatellite markers situating close to candidate genes for behaviour in the nine-spined stickleback. Altogether 13 markers were developed and these markers were used in the subsequent studies with the anonymous random markers and physiologically important gene markers which are already currently available for nine-spined sticklebacks. It was shown that heterozygosity correlated with behaviour in one of the marine nine-spined stickleback populations but with contrasting effects: correlations with behaviour were negative when using physiological gene markers and positive with random markers. No correlation was found between behavioural markers and behaviour. From the physiological gene markers, a strong correlation was found between osmoregulation-related gene markers and behaviour. These results indicate that both local (physiological) and general (random) effects are important in the shaping of behaviour and that heterozygosity– behaviour correlations are population dependent. In this thesis a second linkage map for nine-spined sticklebacks was constructed. Compared to the earlier nine-spined stickleback linkage map, genomic rearrangements were observed between autosomal (LG7) and sex-determing (LG12) linkage groups. This newly constructed map was used in QTL mapping studies in order to locate genomic regions associated with pelvic structures, behaviour and body size/growth. One major QTL was found for pelvic structures and Pitx1 gene was related to these traits as was predicted from three-spined stickleback studies, but this was in contrast to earlier nine-spined stickleback study. The QTL studies also revealed that behaviour and body size/growth were genetically more complex by having more QTL than pelvic traits. However, in many cases, pelvic structure, body size/growth and behaviour were linked to similar map locations indicating possible pleiotropic effects of genes locating in these QTL regions. Many of the gene related markers resided in the QTL area. In the future, studying these possible candidate genes in depth might reveal the underlying mechanism behind the measured traits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genetic and environmental risk factors of vascular cognitive impairment are still largely unknown. This thesis aimed to assess the genetic background of two clinically similar familial small vessel diseases (SVD), CADASIL (Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) and Swedish hMID (hereditary multi-infarct dementia of Swedish type). In the first study, selected genetic modifiers of CADASIL were studied in a homogenous Finnish CADASIL population of 134 patients, all carrying the p.Arg133Cys mutation in NOTCH3. Apolipoprotein E (APOE) genotypes, angiotensinogen (AGT) p.Met268Thr polymorphism and eight NOTCH3 polymorphisms were studied, but no associations between any particular genetic variant and first-ever stroke or migraine were seen. In the second study, smoking, statin medication and physical activity were suggested to be the most profound environmental differences among the monozygotic twins with CADASIL. Swedish hMID was for long misdiagnosed as CADASIL. In the third study, the CADASIL diagnosis in the Swedish hMID family was ruled out on the basis of genetic, radiological and pathological findings, and Swedish hMID was suggested to represent a novel SVD. In the fourth study, the gene defect of Swedish hMID was then sought using whole exome sequencing paired with a linkage analysis. The strongest candidate for the pathogenic mutation was a 3’UTR variant in the COL4A1 gene, but further studies are needed to confirm its functionality. This study provided new information about the genetic background of two inherited SVDs. Profound knowledge about the pathogenic mutations causing familial SVD is also important for correct diagnosis and treatment options.