11 resultados para Radar antennas
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
In this Master Thesis we discuss issues related to the measurement of the effective scattering surface, based on the Doppler Effect. Modeling of the detected signal was made. Narrowband signal filtering using low-frequency amplifier was observed. Parameters of the proposed horn antennas were studied; radar cross section charts for three different objects were received.
Resumo:
Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014
Resumo:
In this Master Thesis the characteristics of the chosen fractal microstrip antennas are investigated. For modeling has been used the structure of the square Serpinsky fractal curves. During the elaboration of this Master thesis the following steps were undertaken: 1) calculation and simulation of square microstrip antennа, 2) optimizing for obtaining the required characteristics on the frequency 2.5 GHz, 3) simulation and calculation of the second and third iteration of the Serpinsky fractal curves, 4) radiation patterns and intensity distribution of these antennas. In this Master’s Thesis the search for the optimal position of the port and fractal elements was conducted. These structures can be used in perspective for creation of antennas working at the same time in different frequency range.
Resumo:
Since the times preceding the Second World War the subject of aircraft tracking has been a core interest to both military and non-military aviation. During subsequent years both technology and configuration of the radars allowed the users to deploy it in numerous fields, such as over-the-horizon radar, ballistic missile early warning systems or forward scatter fences. The latter one was arranged in a bistatic configuration. The bistatic radar has continuously re-emerged over the last eighty years for its intriguing capabilities and challenging configuration and formulation. The bistatic radar arrangement is used as the basis of all the analyzes presented in this work. The aircraft tracking method of VHF Doppler-only information, developed in the first part of this study, is solely based on Doppler frequency readings in relation to time instances of their appearance. The corresponding inverse problem is solved by utilising a multistatic radar scenario with two receivers and one transmitter and using their frequency readings as a base for aircraft trajectory estimation. The quality of the resulting trajectory is then compared with ground-truth information based on ADS-B data. The second part of the study deals with the developement of a method for instantaneous Doppler curve extraction from within a VHF time-frequency representation of the transmitted signal, with a three receivers and one transmitter configuration, based on a priori knowledge of the probability density function of the first order derivative of the Doppler shift, and on a system of blocks for identifying, classifying and predicting the Doppler signal. The extraction capabilities of this set-up are tested with a recorded TV signal and simulated synthetic spectrograms. Further analyzes are devoted to more comprehensive testing of the capabilities of the extraction method. Besides testing the method, the classification of aircraft is performed on the extracted Bistatic Radar Cross Section profiles and the correlation between them for different types of aircraft. In order to properly estimate the profiles, the ADS-B aircraft location information is adjusted based on extracted Doppler frequency and then used for Bistatic Radar Cross Section estimation. The classification is based on seven types of aircraft grouped by their size into three classes.
Resumo:
The objective of this master's thesis is to evaluate the optimum performance of sixsectored hexagonal layout of WCDMA (UMTS) network and analyze the performance at the optimum point. The maximum coverage and the maximum capacity are the main concern of service providers and it is always a challenging task for them to achieve economically. Because the optimum configuration of a network corresponds to a configuration which minimizes the number of sites required to provide a target service probability in the planning area which in turn reduces the deployment cost. The optimum performance means the maximum cell area and themaximum cell capacity the network can provide at the maximum antenna height satisfying the target service probability. Hexagon layout has been proven as the best layout for the cell deployment. In this thesis work, two different configurations using six-sectored sites have been considered for the performance comparison. In first configuration, each antenna is directed towards each corner of hexagon, whereas in second configurationeach antenna is directed towards each side of hexagon. The net difference in the configurations is the 30 degree rotation of antenna direction. The only indoor users in a flat and smooth semi-urban environment area have been considered for the simulation purpose where the traffic distribution is 100 Erl/km2 with 12.2 kbps speech service having maximum mobile speed of 3 km/hr. The simulation results indicate that a similar performance can be achieved in both the configurations, that is, a maximum of 947 m cellrange at antenna height of 49.5 m can be achieved when the antennas are directed towards the corner of hexagon, whereas 943.3 m cell range atantenna height of 54 m can be achieved when the antennas are directed towards the side of hexagon. However, from the interference point of view the first configuration provides better results. The simulation results also show that the network is coverage limited in both the uplink and downlink direction at the optimum point.
Resumo:
Suomen ilmatilaa valvotaan reaaliaikaisesti, pääasiassa ilmavalvontatutkilla. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka tutka havaitsee. Tutka lähettää nämä tiedot edelleen ilmavalvontajärjestelmään. Ilmavalvontajärjestelmä käsittelee tiedot, sekä lähettää ne edelleen esitysjärjestelmään. Esitysjärjestelmässä tiedot esitetään synteettisinä merkkeinä, seurantoina joista käytetään nimitystä träkki. Näiden tietojen puitteissa sekä oman ammattitaitonsa perusteella ihmiset tekevät päätöksiä. Tämän työn tarkoituksena on tutkia tutkan havaintoja träkkien initialisointipisteessä siten, että voitaisiin määritellä tyypillinen rakenne sille mikä on oikea ja mikä väärä tai huono träkki. Tämän lisäksi tulisi ennustaa, mitkä Irakeista eivät aiheudu ilma- aluksista. Saadut tulokset voivat helpottaa työtä havaintojen tulkinnassa - jokainen lintuparvi ei ole ehdokas seurannaksi. Havaintojen luokittelu voidaan tehdä joko neurolaskennalla tai päätöspuulla. Neurolaskenta tehdään neuroverkoilla, jotka koostuvat neuroneista. Päätöspuu- luokittelijat ovat oppivia tietorakenteita kuten neuroverkotkin. Yleisin päätöpuu on binääripuu. Tämän työn tavoitteena on opettaa päätöspuuluokittelija havaintojen avulla siten, että se pystyy luokittelemaan väärät havainnot oikeista. Neurolaskennan mahdollisuuksia tässä työssä ei käsitellä kuin teoreettisesti. Työn tuloksena voi todeta, että päätöspuuluokittelijat ovat erittäin kykeneviä erottamaan oikeat havainnot vääristä. Vaikka tulokset olivat rohkaiseva, lisää tutkimusta tarvitaan määrittelemään luotettavammin tekijät, jotka parhaiten suorittavat luokittelun.
Resumo:
Diplomityössä tarkasteltiin antennien säteilykuviomittauksiin käytettävien antennimittaratojen ominaisuuksia. Sovelletun elektroniikan laboratorion antennimittaradasta kehitettiin toimiva säteilykuvion mittausjärjestelmä, johon kuuluvat radiokaiuton kammio, suuntauskoneisto ja antennikannakkeet, HP 8720D -piirianalysaattori ja RF-kaapelointi sekä valmistutetut mitta-antennitorvet. Työssä vertailtiin koaksiaalikaapeleita ja valittiin antennimittaukseen soveltuvat. 1,70–2,60 GHz:n taajuusalueen mittastandardiksi suunniteltiin torviantenni, jonka kaksi prototyyppiä valmistutettiin konetekniikan osastolla. Torviantennien ominaisuudet mitattiin. Antennimittaradan ominaisuudet ja soveltuvuus erilaisiin antennimittauksiin selvitettiin sekä teoreettisesti että mittauksin.
Resumo:
This thesis consists of four articles and an introductory section. The main research questions in all the articles are about proportionality and party success in Europe, at European, national or district levels. Proportionality in this thesis denotes the proximity of seat shares parties receive compared to their respective vote shares, after the electoral system’s allocation process. This proportionality can be measured through numerous indices that illustrate either the overall proportionality of an electoral system or a particular election. The correspondence of a single party’s seat shares to its vote shares can also be measured. The overall proportionality is essential in three of the articles (1, 2 and 4), where the system’s performance is studied by means of plots. In article 3, minority party success is measured by advantage-ratios that reveal single party’s winnings or losses in the votes to seat allocation process. The first article asks how proportional are the European parliamentary (EP) electoral systems, how do they compare with results gained from earlier studies and how do the EP electoral systems treat different sized parties. The reasons for different outcomes are looked for in explanations given by traditional electoral studies i.e. electoral system variables. The countries studied (EU15) apply electoral systems that vary in many important aspects, even though a certain amount of uniformity has been aspired to for decades. Since the electoral systems of the EP elections closely resemble the national elections, the same kinds of profiles emerge as in the national elections. The electoral systems indeed treat the parties differentially and six different profile types can be found. The counting method seems to somewhat determine the profile group, but the strongest variables determining the shape of a countries’ profile appears to be the average district magnitude and number of seats allocated to each country. The second article also focuses on overall proportionality performance of an electoral system, but here the focus is on the impact of electoral system changes. I have developed a new method of visualizing some previously used indices and some new indices for this purpose. The aim is to draw a comparable picture of these electoral systems’ changes and their effects. The cases, which illustrate this method, are four elections systems, where a change has occurred in one of the system variables, while the rest remained unchanged. The studied cases include the French, Greek and British European parliamentary systems and the Swedish national parliamentary system. The changed variables are electoral type (plurality changed to PR in the UK), magnitude (France splitting the nationwide district into eight smaller districts), legal threshold (Greece introducing a three percent threshold) and counting method (d’Hondt was changed to modified Sainte-Laguë in Sweden). The radar plots from elections after and before the changes are drawn for all country cases. When quantifying the change, the change in the plots area that is created has also been calculated. Using these radar plots we can observe that the change in electoral system type, magnitude, and also to some extent legal threshold had an effect on overall proportionality and accessibility for small parties, while the change between the two highest averages counting method had none. The third article studies the success minority parties have had in nine electoral systems in European heterogeneous countries. This article aims to add more motivation as to why we should care how different sized parties are treated by the electoral systems. Since many of the parties that aspire to represent minorities in European countries are small, the possibilities for small parties are highlighted. The theory of consociational (or power-sharing) democracy suggests that, in heterogeneous societies, a proportional electoral system will provide the fairest treatment of minority parties. The OSCE Lund Recommendations propose a number of electoral system features, which would improve minority representation. In this article some party variables, namely the unity of the minority parties and the geographical concentration of the minorities were included among possible explanations. The conclusions are that the central points affecting minority success were indeed these non-electoral system variables rather than the electoral system itself. Moreover, the size of the party was a major factor governing success in all the systems investigated; large parties benefited in all the studied electoral systems. In the fourth article the proportionality profiles are again applied, but this time to district level results in Finnish parliamentary elections. The level of proportionality distortion is also studied by way of indices. The average magnitudes during the studied periodrange from 7.5 to 26.2 in the Finnish electoral districts and this opens up unequal opportunities for parties in different districts and affects the shape of the profiles. The intra-country case allows the focus to be placed on the effect of district magnitude, since all other electoral systems are kept constant in an intra-country study. The time span in the study is from 1962 to 2007, i.e. the time that the districts have largely been the same geographically. The plots and indices tell the same story, district magnitude and electoral alliances matter. The district magnitude is connected to the overall proportionality of the electoral districts according to both indices, and the profiles are, as expected, also closer to perfect proportionality in large districts. Alliances have helped some small parties to gain a much higher seat share than their respective vote share and these successes affect some of the profiles. The profiles also show a consistent pattern of benefits for the small parties who ally with the larger parties.