17 resultados para RM(rate monotonic)algorithm
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis is done as a complementary part for the active magnet bearing (AMB) control software development project in Lappeenranta University of Technology. The main focus of the thesis is to examine an idea of a real-time operating system (RTOS) framework that operates in a dedicated digital signal processor (DSP) environment. General use real-time operating systems do not necessarily provide sufficient platform for periodic control algorithm utilisation. In addition, application program interfaces found in real-time operating systems are commonly non-existent or provided as chip-support libraries, thus hindering platform independent software development. Hence, two divergent real-time operating systems and additional periodic extension software with the framework design are examined to find solutions for the research problems. The research is discharged by; tracing the selected real-time operating system, formulating requirements for the system, and designing the real-time operating system framework (OSFW). The OSFW is formed by programming the framework and conjoining the outcome with the RTOS and the periodic extension. The system is tested and functionality of the software is evaluated in theoretical context of the Rate Monotonic Scheduling (RMS) theory. The performance of the OSFW and substance of the approach are discussed in contrast to the research theme. The findings of the thesis demonstrates that the forged real-time operating system framework is a viable groundwork solution for periodic control applications.
Resumo:
Selostus: Maan muotoilun, kylvötavan ja siementiheyden vaikutus porkkanan satoon
Resumo:
Selostus: Kylvötiheyden ja kasvunsääteiden vaikutus kevätrukiin satoon
Resumo:
[Abstract]
Resumo:
This 45th volume deals with the development of the Russian rouble, which suffered a severe depreciation crisis in 1998. In the aftermath of this event, a strong investment boom started in Russia. The new devalued rouble exchange rate gave price competitiveness to local industry. In addition to that, increasing export prices of Russian oil and natural gas deliveries have contributed to economic growth lately. Amid this boom period, inflationary pressure has remained high. Price increases have been higher than in the EU, Russia’s main trading partner. However, rouble/euro exchange rate has remained nominally rather stable in the current decade. This means, that rouble appreciates against euro in real terms, which is weakening Russia’s international competitiveness.
Resumo:
J Appl Physiol vol 100, no 2, pp 507-511, 2006
Resumo:
Physiol Meas. 2007 Oct;28(10):1189-200. Epub 2007 Sep 18.
Resumo:
Localization, which is the ability of a mobile robot to estimate its position within its environment, is a key capability for autonomous operation of any mobile robot. This thesis presents a system for indoor coarse and global localization of a mobile robot based on visual information. The system is based on image matching and uses SIFT features as natural landmarks. Features extracted from training images arestored in a database for use in localization later. During localization an image of the scene is captured using the on-board camera of the robot, features are extracted from the image and the best match is searched from the database. Feature matching is done using the k-d tree algorithm. Experimental results showed that localization accuracy increases with the number of training features used in the training database, while, on the other hand, increasing number of features tended to have a negative impact on the computational time. For some parts of the environment the error rate was relatively high due to a strong correlation of features taken from those places across the environment.
Resumo:
Tietokonejärjestelmän osien ja ohjelmistojen suorituskykymittauksista saadaan tietoa,jota voidaan käyttää suorituskyvyn parantamiseen ja laitteistohankintojen päätöksen tukena. Tässä työssä tutustutaan suorituskyvyn mittaamiseen ja mittausohjelmiin eli ns. benchmark-ohjelmistoihin. Työssä etsittiin ja arvioitiin eri tyyppisiä vapaasti saatavilla olevia benchmark-ohjelmia, jotka soveltuvat Linux-laskentaklusterin suorituskyvynanalysointiin. Benchmarkit ryhmiteltiin ja arvioitiin testaamalla niiden ominaisuuksia Linux-klusterissa. Työssä käsitellään myös mittausten tekemisen ja rinnakkaislaskennan haasteita. Benchmarkkeja löytyi moneen tarkoitukseen ja ne osoittautuivat laadultaan ja laajuudeltaan vaihteleviksi. Niitä on myös koottu ohjelmistopaketeiksi, jotta laitteiston suorituskyvystä saisi laajemman kuvan kuin mitä yhdellä ohjelmalla on mahdollista saada. Olennaista on ymmärtää nopeus, jolla dataa saadaan siirretyä prosessorille keskusmuistista, levyjärjestelmistä ja toisista laskentasolmuista. Tyypillinen benchmark-ohjelma sisältää paljon laskentaa tarvitsevan matemaattisen algoritmin, jota käytetään tieteellisissä ohjelmistoissa. Benchmarkista riippuen tulosten ymmärtäminen ja hyödyntäminen voi olla haasteellista.
Resumo:
Tämän diplomityön tarkoituksena on tutkia, mitä vaaditaan uutisten samanlaisuuden automaattiseen tunnistamiseen. Uutiset ovat tekstipohjaisia uutisia, jotka on haettu eri uutislähteistä. Uutisista on tarkoitus tunnistaa ensinnäkin ne uutiset, jotka tarkoittavat samaa asiaa, sekä ne uutiset, jotka eivät ole aivan sama asia, mutta liittyvät kuitenkin toisiinsa. Tässä diplomityössä tutkitaan, millä algoritmeilla tämä tunnistus onnistuu tehokkaimmin sekä suomalaisessa, että englanninkielisessä tekstissä. Diplomityössä vertaillaan valmiita algoritmeja. Tavoitteena on valita sellainen algoritmiyhdistelmä, että 90 % vertailluista uutisista tunnistuu oikein. Tutkimuksessa käytetään 2 eri ryhmittelyalgoritmia, sekä 3 eri stemmaus-algoritmia. Näitä algoritmeja vertaillaan sekä uutisten tunnistustehokkuuden, että niiden suorituskyvyn suhteen. Parhaimmaksi stemmaus-algoritmiksi osoittautui sekä suomen-, että englanninkielisten uutisten vertailussa Porterin algoritmi. Ryhmittely-algoritmeista tehokkaammaksi osoittautui yksinkertaisempi erilaisiin tunnuslukuihin perustuva algoritmi.
Resumo:
NORDIn julkaisu 45 käsittelee ruplan kehitystä. Vuonna 1998 rupla kärsi rajusta rahanarvon alenemisesta, minkä jälkiseuraksena investointi alkoi Venäjällä kasvaa. Uusi devalvoitu ruplan vaihtokurssi toi hintakilpailykykyä paikalliselle teollisuudelle. Tämän lisäksi Venäjän öljyn vientihintojen nousu ja maakaasujakelu ovat edesauttaneet taloudellista kasvua viime aikoina. Tämän noususuhdanteen vallitessa inflaatiopaine on pysynyt korkealla. Hinnannousut ovat olleet korkeampia kuinEU:ssa, Venäjän pääkauppakumppanilla. Kuitenkin, ruplan/euron vaihtokurssit ovat pysyneet nimellisesti melko vakaina tällä vuosikymmenellä. Tämä tarkoittaa, että todellisuudessa rupla vahvistuu euroa vastaan, mikä heikentää Venäjän kansainvälistä kilpailykykyä.
Resumo:
The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.