3 resultados para RESPONSE-INHIBITION TASK
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.
Resumo:
Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.
Resumo:
Social tagging evolved in response to a need to tag heterogeneous objects, the automated tagging of which is usually not feasible by current technological means. Social tagging can be used for more flexible competence management within organizations. The profiles of employees can be built in the form of groups of tags, as employees tag each other, based on their familiarity of each other’s expertise. This can serve as a replacement for the more traditional competence management approaches, which usually become outdated due to social and organizational hurdles, and obsolete data. These limitations can be overcome by people tagging, as the information revealed by such tags is usually based on most recent employee interaction and knowledge. Task management as part of personal information management aims at the support of users’ individual task handling. This can include collaborating with other individuals, sharing one’s knowledge, both functional and process-related, and distributing documents and web resources. In this context, Task patterns can be used as templates that collect information and experience around tasks associated to it during run time, facilitating agility. The effective collaboration among contributors necessitates the means to find the appropriate individuals to work with on the task, and this can be made possible by using social tagging to describe individual competencies. The goal of this study is to support finding and tagging people within task management, through the effective exploitation of the work/task context. This involves the utilization of knowledge of the workers’ expertise, nature of the task/task pattern and information available from the documents and web resources attached to the task. Vice versa, task management provides an excellent environment for social tagging due to the task context that already provides suitable tags. The study also aims at assisting users of the task management solution with the collaborative construction of light-weight ontology by inferring semantic relations between tags. The thesis project aims at an implementation of people finding & tagging within the java application for task management that consumes web services, which provide the required ontology for the organization.