9 resultados para REGRESSION MULTINOMIAL ANALYSIS
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Cooling crystallization is one of the most important purification and separation techniques in the chemical and pharmaceutical industry. The product of the cooling crystallization process is always a suspension that contains both the mother liquor and the product crystals, and therefore the first process step following crystallization is usually solid-liquid separation. The properties of the produced crystals, such as their size and shape, can be affected by modifying the conditions during the crystallization process. The filtration characteristics of solid/liquid suspensions, on the other hand, are strongly influenced by the particle properties, as well as the properties of the liquid phase. It is thus obvious that the effect of the changes made to the crystallization parameters can also be seen in the course of the filtration process. Although the relationship between crystallization and filtration is widely recognized, the number of publications where these unit operations have been considered in the same context seems to be surprisingly small. This thesis explores the influence of different crystallization parameters in an unseeded batch cooling crystallization process on the external appearance of the product crystals and on the pressure filtration characteristics of the obtained product suspensions. Crystallization experiments are performed by crystallizing sulphathiazole (C9H9N3O2S2), which is a wellknown antibiotic agent, from different mixtures of water and n-propanol in an unseeded batch crystallizer. The different crystallization parameters that are studied are the composition of the solvent, the cooling rate during the crystallization experiments carried out by using a constant cooling rate throughout the whole batch, the cooling profile, as well as the mixing intensity during the batch. The obtained crystals are characterized by using an automated image analyzer and the crystals are separated from the solvent through constant pressure batch filtration experiments. Separation characteristics of the suspensions are described by means of average specific cake resistance and average filter cake porosity, and the compressibilities of the cakes are also determined. The results show that fairly large differences can be observed between the size and shape of the crystals, and it is also shown experimentally that the changes in the crystal size and shape have a direct impact on the pressure filtration characteristics of the crystal suspensions. The experimental results are utilized to create a procedure that can be used for estimating the filtration characteristics of solid-liquid suspensions according to the particle size and shape data obtained by image analysis. Multilinear partial least squares regression (N-PLS) models are created between the filtration parameters and the particle size and shape data, and the results presented in this thesis show that relatively obvious correlations can be detected with the obtained models.
Resumo:
Kolmen eri hitsausliitoksen väsymisikä arvio on analysoitu monimuuttuja regressio analyysin avulla. Regression perustana on laaja S-N tietokanta joka on kerätty kirjallisuudesta. Tarkastellut liitokset ovat tasalevy liitos, krusiformi liitos ja pitkittäisripa levyssä. Muuttujina ovat jännitysvaihtelu, kuormitetun levyn paksuus ja kuormitus tapa. Paksuus effekti on käsitelty uudelleen kaikkia kolmea liitosta ajatellen. Uudelleen käsittelyn avulla on varmistettu paksuus effektin olemassa olo ennen monimuuttuja regressioon siirtymistä. Lineaariset väsymisikä yhtalöt on ajettu kolmelle hitsausliitokselle ottaen huomioon kuormitetun levyn paksuus sekä kuormitus tapa. Väsymisikä yhtalöitä on verrattu ja keskusteltu testitulosten valossa, jotka on kerätty kirjallisuudesta. Neljä tutkimustaon tehty kerättyjen väsymistestien joukosta ja erilaisia väsymisikä arvio metodeja on käytetty väsymisiän arviointiin. Tuloksia on tarkasteltu ja niistä keskusteltu oikeiden testien valossa. Tutkimuksissa on katsottu 2mm ja 6mm symmetristäpitkittäisripaa levyssä, 12.7mm epäsymmetristä pitkittäisripaa, 38mm symmetristä pitkittäisripaa vääntökuormituksessa ja 25mm/38mm kuorman kantavaa krusiformi liitosta vääntökuormituksessa. Mallinnus on tehty niin lähelle testi liitosta kuin mahdollista. Väsymisikä arviointi metodit sisältävät hot-spot metodin jossa hot-spot jännitys on laskettu kahta lineaarista ja epälineaarista ekstrapolointiakäyttäen sekä paksuuden läpi integrointia käyttäen. Lovijännitys ja murtumismekaniikka metodeja on käytetty krusiformi liitosta laskiessa.
Resumo:
Abstract
Resumo:
Raw measurement data does not always immediately convey useful information, but applying mathematical statistical analysis tools into measurement data can improve the situation. Data analysis can offer benefits like acquiring meaningful insight from the dataset, basing critical decisions on the findings, and ruling out human bias through proper statistical treatment. In this thesis we analyze data from an industrial mineral processing plant with the aim of studying the possibility of forecasting the quality of the final product, given by one variable, with a model based on the other variables. For the study mathematical tools like Qlucore Omics Explorer (QOE) and Sparse Bayesian regression (SB) are used. Later on, linear regression is used to build a model based on a subset of variables that seem to have most significant weights in the SB model. The results obtained from QOE show that the variable representing the desired final product does not correlate with other variables. For SB and linear regression, the results show that both SB and linear regression models built on 1-day averaged data seriously underestimate the variance of true data, whereas the two models built on 1-month averaged data are reliable and able to explain a larger proportion of variability in the available data, making them suitable for prediction purposes. However, it is concluded that no single model can fit well the whole available dataset and therefore, it is proposed for future work to make piecewise non linear regression models if the same available dataset is used, or the plant to provide another dataset that should be collected in a more systematic fashion than the present data for further analysis.
Resumo:
Due to its non-storability, electricity must be produced at the same time that it is consumed, as a result prices are determined on an hourly basis and thus analysis becomes more challenging. Moreover, the seasonal fluctuations in demand and supply lead to a seasonal behavior of electricity spot prices. The purpose of this thesis is to seek and remove all causal effects from electricity spot prices and remain with pure prices for modeling purposes. To achieve this we use Qlucore Omics Explorer (QOE) for the visualization and the exploration of the data set and Time Series Decomposition method to estimate and extract the deterministic components from the series. To obtain the target series we use regression based on the background variables (water reservoir and temperature). The result obtained is three price series (for Sweden, Norway and System prices) with no apparent pattern.
Resumo:
Singular Value Decomposition (SVD), Principal Component Analysis (PCA) and Multiple Linear Regression (MLR) are some of the mathematical pre- liminaries that are discussed prior to explaining PLS and PCR models. Both PLS and PCR are applied to real spectral data and their di erences and similarities are discussed in this thesis. The challenge lies in establishing the optimum number of components to be included in either of the models but this has been overcome by using various diagnostic tools suggested in this thesis. Correspondence analysis (CA) and PLS were applied to ecological data. The idea of CA was to correlate the macrophytes species and lakes. The di erences between PLS model for ecological data and PLS for spectral data are noted and explained in this thesis. i
Resumo:
In this thesis, the suitability of different trackers for finger tracking in high-speed videos was studied. Tracked finger trajectories from the videos were post-processed and analysed using various filtering and smoothing methods. Position derivatives of the trajectories, speed and acceleration were extracted for the purposes of hand motion analysis. Overall, two methods, Kernelized Correlation Filters and Spatio-Temporal Context Learning tracking, performed better than the others in the tests. Both achieved high accuracy for the selected high-speed videos and also allowed real-time processing, being able to process over 500 frames per second. In addition, the results showed that different filtering methods can be applied to produce more appropriate velocity and acceleration curves calculated from the tracking data. Local Regression filtering and Unscented Kalman Smoother gave the best results in the tests. Furthermore, the results show that tracking and filtering methods are suitable for high-speed hand-tracking and trajectory-data post-processing.
Resumo:
TAVOITTEET: Tämän tutkielman tarkoitus on tarkastella eri toimialojen likviditeettitasoja vuosien 2007 ja 2013 välillä. Se tarkastelee myös kassanhallinnan ja likviditeetin kirjallisuutta, erilaisia likviditeettiä kuvaavia tunnuslukuja sekä asioita, joilla on vaikutusta likviditeettiin. Tämän lisäksi se tutkii informaatio ja kommunikaatio sektoria tarkemmin. DATA: Data on kerätty Orbis tietokannasta. Toimialakohtaiset keskiarvot on laskettu joko kappaleen 2 esittämillä kaavoilla tai noudettu suoraan tietokannasta. Hajonta kuvaajat on tehty Excelillä ja korrelaatio matriisi ja regressioanalyysit SAS EG:llä. TULOKSET: Tämä tutkimus esittää toimialakohtaiset keskiarvot liquidity ratiosta, solvency ratiosta sekä gearingista, kuten monista muista likviditeettiä kuvaavista tai siihen vaikuttavista tunnusluvuista. Tutkimus osoittaa, että keskimäärin likviditeetti ja maksuvalmius ovat säilyneet melko samana, mutta toimialakohtaiset muutokset ovat voimakkaita. IC sektorilla likviditeettiin vaikuttaa katetuotto, työntekijöiden määrä, liikevaihto, taseen määrä sekä maksuaika.