5 resultados para RECTAL TUMOR-EXCISION
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Prostate cancer is generally a slowly developing disease. However, some cancers develop into an aggressive, metastasic and consequently life-threatening state. The mechanisms of prostate cancer spread are still mainly unidentified but hormones and growth factors are known to been involved. The forming of new blood vessels i.e. angiogenesis is crucial for tumor growth. Blood vessels and lymphatic vessels are also prominent routes for metastasis. Both angiogenic and lymphangiogenic factors are overexpressed in prostate cancer. We established an in vivo model to study the factors effecting human prostate cancer growth and metastasis. Tumors were produced by the orthotopic inoculation of PC-3 prostate cancer cells into the prostates of immunodeficient mice. Like human prostate tumors, these tumors metastasized to prostate-draining lymph nodes. Treatment of the mice with the bisphosphonate alendronate known to decrease prostate cancer cell invasion in vitro inhibited metastasis and decreased tumor growth. Decreased tumor growth was associated with decreased angiogenesis and increased apoptosis of tumor cells. To elucidate the role of angiogenesis in prostate cancer progression, we studied the growth of orthotopic PC-3 tumors overexpressing fibroblast growth factor b (FGF8b) known to be expressed in human prostate cancer. FGF8b increased tumor growth and angiogenesis, which were both associated with a characteristic gene expression pattern. To study the role of lymphangiogenesis, we produced orthotopic PC-3 tumors overexpressing vascular endothelial growth factor C (VEGF-C). Blocking of VEGF-C receptor (VEGFR3) completely inhibited lymph node metastasis whereas overexpression of VEGF-C increased tumor growth and angiogenesis. VEGF-C also increased lung metastases but, surprisingly, decreased spread to lymph nodes. This suggests that the expanded vascular network was primarily used as a route for tumor spreading. Finally, the functionality of the capillary network in subcutaneous FGF8b-overexpressing PC-3 tumors was compared to that of tumors overexpressing VEGF. Both tumors showed angiogenic morphology and grew faster than control tumors. However, FGF8b tumors were hypoxic and their perfusion and oxygenation was poor compared with VEGF tumors. This suggests that the growth advantage of FGF8b tumors is more likely due to stimulated proliferation than effective angiogenesis. In conclusion, these results show that orthotopic prostate tumors provide a useful model to explore the mechanisms of prostate cancer growth and metastasis.
Resumo:
Hypoksiaan liittyvät biologiset merkkiaineet leikkausta edeltävällä sädehoidolla tai kemosädehoidolla hoidetussa peräsuolisyövässä Peräsuolensyöpä on yleinen pahanlaatuinen kasvain. Leikkausta edeltävä sädehoito annetaan yleensä T3-T4-kasvaimille. Tutkimuksella pyrittiin selvittämään, voidaanko kasvaimen hapenpuutteeseen liittyvillä biologisilla merkkiaineilla arvioida peräsuolisyövän ennustetta leikkausta edeltävän sädehoidon tai kemosädehoidon jälkeen. Tällaisia merkkiaineita ovat hapenpuutteen vaikutuksesta aktivoituva HIF-1alfa hiilihappoanhydraasi IX (CA IX), sokerin kuljetukseen solussa osallistuva GLUT-1 sekä solun tukirankaproteiini ezrin. Tutkimukseen otettiin 178 potilasta, jotka olivat saaneet ennen leikkausta lyhyen (n=77) tai pitkän sädehoidon (n=10), pitkän sädehoidon ja solunsalpaajahoidon (n=37) tai ei mitään hoitoa (n=54). Lisäksi osalta leikkausta edeltävää sädehoitoa saaneelta potilaalta tutkittiin hoitoja edeltävät, diagnostiset näytteet (n=80). Tutkimuksessa käytettiin immunehistokemiallisia värjäysmenetelmiä. Kasvaimen regressiota (TRG) arvioitiin pitkän sädehoidon jälkeisistä näytteistä. Leikkausnäytteissä negatiivinen/heikko CA IX intensiteetti liittyi sekä pidempään tautispesifiseen (p=0.034) että tautivapaaseen elinaikaan (p=0.003) ja pitkän sädehoidon jälkeen HIF-1alfa-negatiivisuus pidempään tautispesifiseen (p=0.001) sekä negatiivinen/heikko GLUT-1 pidempään tautivapaaseen elinaikaan (p=0.066). Voimakas ezrin-ilmentymä diagnostisissa näytteissä liittyi lyhyempään tautivapaaseen ja tautispesifiseen (p=0.027 ja p=0.002) ennusteeseen. Monimuuttuja-analyysissä vahva CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti huonompaa tautivapaata ja tautispesifistä selviytymistä. Erinomainen TRG liittyi negatiiviseen/heikkoon CA IX- (p=0.057), ezrin- (p=0.012) ja GLUT-1 -ilmentymään (p=0.013) leikkausnäytteissä. Kun kaikki neljä merkkiainetta analysoitiin yhdessä monimuuttuja-analyysissä, CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti tautispesifistä elinaikaa. Voimakas CA IX-ilmentymä leikkausnäytteissä ja positiivinen HIF-1alfa- ja vahva GLUT-1-ilmentymä pitkän sädehoidon jälkeisissä leikkausnäytteissä sekä vahva ezrin-ilmentymä diagnostisissa näytteissä liittyivät epäsuotuisaan ennusteeseen. Monimuuttujaanalyysissä kohtalainen/voimakas CA IX intensiteetti leikkausnäytteissä ennusti itsenäisesti huonompaa tautivapaata ja tautispesifistä elinaikaa. CA IX on vahva biologinen merkkiaine peräsuolisyövässä.
Resumo:
This thesis focuses on tissue inhibitor of metalloproteinases 4 (TIMP4) which is the newest member of a small gene and protein family of four closely related endogenous inhibitors of extracellular matrix (ECM) degrading enzymes. Existing data on TIMP4 suggested that it exhibits a more restricted expression pattern than the other TIMPs with high expression levels in heart, brain, ovary and skeletal muscle. These observations and the fact that the ECM is of special importance to provide the cardiovascular system with structural strength combined with elasticity and distensibility, prompted the present molecular biologic investigation on TIMP4. In the first part of the study the murine Timp4 gene was cloned and characterized in detail. The structure of murine Timp4 genomic locus resembles that in other species and of the other Timps. The highest Timp4 expression was detected in heart, ovary and brain. As the expression pattern of Timp4 gives only limited information about its role in physiology and pathology, Timp4 knockout mice were generated next. The analysis of Timp4 knockout mice revealed that Timp4 deficiency has no obvious effect on the development, growth or fertility of mice. Therefore, Timp4 deficient mice were challenged using available cardiovascular models, i.e. experimental cardiac pressure overload and myocardial infarction. In the former model, Timp4 deficiency was found to be compensated by Timp2 overexpression, whereas in the myocardial infarct model, Timp4 deficiency resulted in increased mortality due to increased susceptibility for cardiac rupture. In the wound healing model, Timp4 deficiency was shown to result in transient retardation of re-epithelialization of cutaneous wounds. Melanoma tumor growth was similar in Timp4 deficient and control mice. Despite of this, lung metastasis of melanoma cells was significantly increased in Timp4 null mice. In an attempt to translate the current findings to patient material, TIMP4 expression was studied in human specimens representing different inflammatory cardiovascular pathologies, i.e. giant cell arteritis, atherosclerotic coronary arteries and heart allografts exhibiting signs of chronic rejection. The results showed that cardiovascular expression of TIMP4 is elevated particularly in areas exhibiting inflammation. The results of the present studies suggest that TIMP4 has a special role in the regulation of tissue repair processes in the heart, and also in healing wounds and metastases. Furthermore, evidence is provided suggesting the usefulness of TIMP4 as a novel systemic marker for vascular inflammation.
Resumo:
Breast cancer is the most frequent solid tumor among women and the leading cause of cancer related death in women worldwide. The prognosis of breast cancer patients is tightly correlated with the degree of spread beyond the primary tumor. In this thesis, the aim was to identify novel regulators of tumor progression in breast cancer as well as to get insights into the molecular mechanisms of breast cancer progression and metastasis. First, the role of phospholipid remodeling genes and enzymes important for breast cancer progression was studied in breast cancer samples as well as in cultured breast cancer cells. Tumor samples displayed increased de novo synthesized fatty acids especially in aggressive breast cancer. Furthermore, RNAi mediated cell based assays implicated several target genes critical for breast cancer cell proliferation and survival. Second, the role of arachidonic acid pathway members 15-hydroxyprostaglandin dehydrogenase (HPGD) and phospholipase A2 group VII (PLA2G7) in tumorigenesis associated processes was explored in metastatic breast cancer cells. Both targets were found to contribute to epithelial-mesenchymal transition related processes. Third, a high-throughput RNAi lysate microarray screen was utilized to identify novel vimentin expression regulating genes. Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) was found to promote cellular features connected with metastatic disease, thus implicating MTHFD2 as a potential drug target to block breast cancer cell migration and invasion. Taken together, this study identified several putative targets for breast cancer therapy. In addition, these results provide novel information about the mechanisms and factors underlying breast cancer progression.
Resumo:
Prostate cancer (PCa) has emerged as the most commonly diagnosed lethal cancer in European men. PCa is a heterogeneous cancer that in the majority of the cases is slow growing: consequently, these patients would not need any medical treatment. Currently, the measurement of prostate-specific antigen (PSA) from blood by immunoassay followed by digital rectal examination and a pathological examination of prostate tissue biopsies are the most widely used methods in the diagnosis of PCa. These methods suffer from a lack of sensitivity and specificity that may cause either missed cancers or overtreatment as a consequence of over-diagnosis. Therefore, more reliable biomarkers are needed for a better discrimination between indolent and potentially aggressive cancers. The aim of this thesis was the identification and validation of novel biomarkers for PCa. The mRNA expression level of 14 genes including AMACR, AR, PCA3, SPINK1, TMPRSS2-ERG, KLK3, ACSM1, CACNA1D, DLX1, LMNB1, PLA2G7, RHOU, SPON2, and TDRD1 was measured by a truly quantitative reverse transcription PCR in different prostate tissue samples from men with and without PCa. For the last eight genes the function of the genes in PCa progression was studied by a specific siRNA knockdown in PC-3 and VCaP cells. The results from radical prostatectomy and cystoprostatectomy samples showed statistically significant overexpression for all the target genes, except for KLK3 in men with PCa compared with men without PCa. Statistically significant difference was also observed in low versus high Gleason grade tumors (for PLA2G7), PSA relapse versus no relapse (for SPON2), and low versus high TNM stages (for CACNA1D and DLX1). Functional studies and siRNA silencing results revealed a cytotoxicity effect for the knock-down of DLX1, PLA2G7, and RHOU, and altered tumor cell invasion for PLA2G7, RHOU, ACSM1, and CACNA1D knock-down in 3D conditions. In addition, effects on tumor cell motility were observed after silencing PLA2G7 and RHOU in 2D monolayer cultures. Altogether, these findings indicate the possibility of utilizing these new markers as diagnostic and prognostic markers, and they may also represent therapeutic targets for PCa.