26 resultados para Query expansion, Text mining, Information retrieval, Chinese IR

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomedical research is currently facing a new type of challenge: an excess of information, both in terms of raw data from experiments and in the number of scientific publications describing their results. Mirroring the focus on data mining techniques to address the issues of structured data, there has recently been great interest in the development and application of text mining techniques to make more effective use of the knowledge contained in biomedical scientific publications, accessible only in the form of natural human language. This thesis describes research done in the broader scope of projects aiming to develop methods, tools and techniques for text mining tasks in general and for the biomedical domain in particular. The work described here involves more specifically the goal of extracting information from statements concerning relations of biomedical entities, such as protein-protein interactions. The approach taken is one using full parsing—syntactic analysis of the entire structure of sentences—and machine learning, aiming to develop reliable methods that can further be generalized to apply also to other domains. The five papers at the core of this thesis describe research on a number of distinct but related topics in text mining. In the first of these studies, we assessed the applicability of two popular general English parsers to biomedical text mining and, finding their performance limited, identified several specific challenges to accurate parsing of domain text. In a follow-up study focusing on parsing issues related to specialized domain terminology, we evaluated three lexical adaptation methods. We found that the accurate resolution of unknown words can considerably improve parsing performance and introduced a domain-adapted parser that reduced the error rate of theoriginal by 10% while also roughly halving parsing time. To establish the relative merits of parsers that differ in the applied formalisms and the representation given to their syntactic analyses, we have also developed evaluation methodology, considering different approaches to establishing comparable dependency-based evaluation results. We introduced a methodology for creating highly accurate conversions between different parse representations, demonstrating the feasibility of unification of idiverse syntactic schemes under a shared, application-oriented representation. In addition to allowing formalism-neutral evaluation, we argue that such unification can also increase the value of parsers for domain text mining. As a further step in this direction, we analysed the characteristics of publicly available biomedical corpora annotated for protein-protein interactions and created tools for converting them into a shared form, thus contributing also to the unification of text mining resources. The introduced unified corpora allowed us to perform a task-oriented comparative evaluation of biomedical text mining corpora. This evaluation established clear limits on the comparability of results for text mining methods evaluated on different resources, prompting further efforts toward standardization. To support this and other research, we have also designed and annotated BioInfer, the first domain corpus of its size combining annotation of syntax and biomedical entities with a detailed annotation of their relationships. The corpus represents a major design and development effort of the research group, with manual annotation that identifies over 6000 entities, 2500 relationships and 28,000 syntactic dependencies in 1100 sentences. In addition to combining these key annotations for a single set of sentences, BioInfer was also the first domain resource to introduce a representation of entity relations that is supported by ontologies and able to capture complex, structured relationships. Part I of this thesis presents a summary of this research in the broader context of a text mining system, and Part II contains reprints of the five included publications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Choice of industrial development options and the relevant allocation of the research funds become more and more difficult because of the increasing R&D costs and pressure for shorter development period. Forecast of the research progress is based on the analysis of the publications activity in the field of interest as well as on the dynamics of its change. Moreover, allocation of funds is hindered by exponential growth in the number of publications and patents. Thematic clusters become more and more difficult to identify, and their evolution hard to follow. The existing approaches of research field structuring and identification of its development are very limited. They do not identify the thematic clusters with adequate precision while the identified trends are often ambiguous. Therefore, there is a clear need to develop methods and tools, which are able to identify developing fields of research. The main objective of this Thesis is to develop tools and methods helping in the identification of the promising research topics in the field of separation processes. Two structuring methods as well as three approaches for identification of the development trends have been proposed. The proposed methods have been applied to the analysis of the research on distillation and filtration. The results show that the developed methods are universal and could be used to study of the various fields of research. The identified thematic clusters and the forecasted trends of their development have been confirmed in almost all tested cases. It proves the universality of the proposed methods. The results allow for identification of the fast-growing scientific fields as well as the topics characterized by stagnant or diminishing research activity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent advances in machine learning methods enable increasingly the automatic construction of various types of computer assisted methods that have been difficult or laborious to program by human experts. The tasks for which this kind of tools are needed arise in many areas, here especially in the fields of bioinformatics and natural language processing. The machine learning methods may not work satisfactorily if they are not appropriately tailored to the task in question. However, their learning performance can often be improved by taking advantage of deeper insight of the application domain or the learning problem at hand. This thesis considers developing kernel-based learning algorithms incorporating this kind of prior knowledge of the task in question in an advantageous way. Moreover, computationally efficient algorithms for training the learning machines for specific tasks are presented. In the context of kernel-based learning methods, the incorporation of prior knowledge is often done by designing appropriate kernel functions. Another well-known way is to develop cost functions that fit to the task under consideration. For disambiguation tasks in natural language, we develop kernel functions that take account of the positional information and the mutual similarities of words. It is shown that the use of this information significantly improves the disambiguation performance of the learning machine. Further, we design a new cost function that is better suitable for the task of information retrieval and for more general ranking problems than the cost functions designed for regression and classification. We also consider other applications of the kernel-based learning algorithms such as text categorization, and pattern recognition in differential display. We develop computationally efficient algorithms for training the considered learning machines with the proposed kernel functions. We also design a fast cross-validation algorithm for regularized least-squares type of learning algorithm. Further, an efficient version of the regularized least-squares algorithm that can be used together with the new cost function for preference learning and ranking tasks is proposed. In summary, we demonstrate that the incorporation of prior knowledge is possible and beneficial, and novel advanced kernels and cost functions can be used in algorithms efficiently.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This piece of work which is Identification of Research Portfolio for Development of Filtration Equipment aims at presenting a novel approach to identify promising research topics in the field of design and development of filtration equipment and processes. The projected approach consists of identifying technological problems often encountered in filtration processes. The sources of information for the problem retrieval were patent documents and scientific papers that discussed filtration equipments and processes. The problem identification method adopted in this work focussed on the semantic nature of a sentence in order to generate series of subject-action-object structures. This was achieved with software called Knowledgist. List of problems often encountered in filtration processes that have been mentioned in patent documents and scientific papers were generated. These problems were carefully studied and categorized. Suggestions were made on the various classes of these problems that need further investigation in order to propose a research portfolio. The uses and importance of other methods of information retrieval were also highlighted in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet on elektronisen postin perusrakenne ja ollut tärkeä tiedonlähde akateemisille käyttäjille jo pitkään. Siitä on tullut merkittävä tietolähde kaupallisille yrityksille niiden pyrkiessä pitämään yhteyttä asiakkaisiinsa ja seuraamaan kilpailijoitansa. WWW:n kasvu sekä määrällisesti että sen moninaisuus on luonut kasvavan kysynnän kehittyneille tiedonhallintapalveluille. Tällaisia palveluja ovet ryhmittely ja luokittelu, tiedon löytäminen ja suodattaminen sekä lähteiden käytön personointi ja seuranta. Vaikka WWW:stä saatavan tieteellisen ja kaupallisesti arvokkaan tiedon määrä on huomattavasti kasvanut viime vuosina sen etsiminen ja löytyminen on edelleen tavanomaisen Internet hakukoneen varassa. Tietojen hakuun kohdistuvien kasvavien ja muuttuvien tarpeiden tyydyttämisestä on tullut monimutkainen tehtävä Internet hakukoneille. Luokittelu ja indeksointi ovat merkittävä osa luotettavan ja täsmällisen tiedon etsimisessä ja löytämisessä. Tämä diplomityö esittelee luokittelussa ja indeksoinnissa käytettävät yleisimmät menetelmät ja niitä käyttäviä sovelluksia ja projekteja, joissa tiedon hakuun liittyvät ongelmat on pyritty ratkaisemaan.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objectives of this research work “Identification of the Emerging Issues in Recycled Fiber processing” are discovering of emerging research issues and presenting of new approaches to identify promising research themes in recovered paper application and production. The projected approach consists of identifying technological problems often encountered in wastepaper preparation processes and also improving the quality of recovered paper and increasing its proportion in the composition of paper and board. The source of information for the problem retrieval is scientific publications in which waste paper application and production were discussed. The study has exploited several research methods to understand the changes related to utilization of recovered paper. The all assembled data was carefully studied and categorized by applying software called RefViz and CiteSpace. Suggestions were made on the various classes of these problems that need further investigation in order to propose an emerging research trends in recovered paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biomedical natural language processing (BioNLP) is a subfield of natural language processing, an area of computational linguistics concerned with developing programs that work with natural language: written texts and speech. Biomedical relation extraction concerns the detection of semantic relations such as protein-protein interactions (PPI) from scientific texts. The aim is to enhance information retrieval by detecting relations between concepts, not just individual concepts as with a keyword search. In recent years, events have been proposed as a more detailed alternative for simple pairwise PPI relations. Events provide a systematic, structural representation for annotating the content of natural language texts. Events are characterized by annotated trigger words, directed and typed arguments and the ability to nest other events. For example, the sentence “Protein A causes protein B to bind protein C” can be annotated with the nested event structure CAUSE(A, BIND(B, C)). Converted to such formal representations, the information of natural language texts can be used by computational applications. Biomedical event annotations were introduced by the BioInfer and GENIA corpora, and event extraction was popularized by the BioNLP'09 Shared Task on Event Extraction. In this thesis we present a method for automated event extraction, implemented as the Turku Event Extraction System (TEES). A unified graph format is defined for representing event annotations and the problem of extracting complex event structures is decomposed into a number of independent classification tasks. These classification tasks are solved using SVM and RLS classifiers, utilizing rich feature representations built from full dependency parsing. Building on earlier work on pairwise relation extraction and using a generalized graph representation, the resulting TEES system is capable of detecting binary relations as well as complex event structures. We show that this event extraction system has good performance, reaching the first place in the BioNLP'09 Shared Task on Event Extraction. Subsequently, TEES has achieved several first ranks in the BioNLP'11 and BioNLP'13 Shared Tasks, as well as shown competitive performance in the binary relation Drug-Drug Interaction Extraction 2011 and 2013 shared tasks. The Turku Event Extraction System is published as a freely available open-source project, documenting the research in detail as well as making the method available for practical applications. In particular, in this thesis we describe the application of the event extraction method to PubMed-scale text mining, showing how the developed approach not only shows good performance, but is generalizable and applicable to large-scale real-world text mining projects. Finally, we discuss related literature, summarize the contributions of the work and present some thoughts on future directions for biomedical event extraction. This thesis includes and builds on six original research publications. The first of these introduces the analysis of dependency parses that leads to development of TEES. The entries in the three BioNLP Shared Tasks, as well as in the DDIExtraction 2011 task are covered in four publications, and the sixth one demonstrates the application of the system to PubMed-scale text mining.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overwhelming amount and unprecedented speed of publication in the biomedical domain make it difficult for life science researchers to acquire and maintain a broad view of the field and gather all information that would be relevant for their research. As a response to this problem, the BioNLP (Biomedical Natural Language Processing) community of researches has emerged and strives to assist life science researchers by developing modern natural language processing (NLP), information extraction (IE) and information retrieval (IR) methods that can be applied at large-scale, to scan the whole publicly available biomedical literature and extract and aggregate the information found within, while automatically normalizing the variability of natural language statements. Among different tasks, biomedical event extraction has received much attention within BioNLP community recently. Biomedical event extraction constitutes the identification of biological processes and interactions described in biomedical literature, and their representation as a set of recursive event structures. The 2009–2013 series of BioNLP Shared Tasks on Event Extraction have given raise to a number of event extraction systems, several of which have been applied at a large scale (the full set of PubMed abstracts and PubMed Central Open Access full text articles), leading to creation of massive biomedical event databases, each of which containing millions of events. Sinece top-ranking event extraction systems are based on machine-learning approach and are trained on the narrow-domain, carefully selected Shared Task training data, their performance drops when being faced with the topically highly varied PubMed and PubMed Central documents. Specifically, false-positive predictions by these systems lead to generation of incorrect biomolecular events which are spotted by the end-users. This thesis proposes a novel post-processing approach, utilizing a combination of supervised and unsupervised learning techniques, that can automatically identify and filter out a considerable proportion of incorrect events from large-scale event databases, thus increasing the general credibility of those databases. The second part of this thesis is dedicated to a system we developed for hypothesis generation from large-scale event databases, which is able to discover novel biomolecular interactions among genes/gene-products. We cast the hypothesis generation problem as a supervised network topology prediction, i.e predicting new edges in the network, as well as types and directions for these edges, utilizing a set of features that can be extracted from large biomedical event networks. Routine machine learning evaluation results, as well as manual evaluation results suggest that the problem is indeed learnable. This work won the Best Paper Award in The 5th International Symposium on Languages in Biology and Medicine (LBM 2013).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incredible rapid development to huge volumes of air travel, mainly because of jet airliners that appeared to the sky in the 1950s, created the need for systematic research for aviation safety and collecting data about air traffic. The structured data can be analysed easily using queries from databases and running theseresults through graphic tools. However, in analysing narratives that often give more accurate information about the case, mining tools are needed. The analysis of textual data with computers has not been possible until data mining tools have been developed. Their use, at least among aviation, is still at a moderate level. The research aims at discovering lethal trends in the flight safety reports. The narratives of 1,200 flight safety reports from years 1994 – 1996 in Finnish were processed with three text mining tools. One of them was totally language independent, the other had a specific configuration for Finnish and the third originally created for English, but encouraging results had been achieved with Spanish and that is why a Finnish test was undertaken, too. The global rate of accidents is stabilising and the situation can now be regarded as satisfactory, but because of the growth in air traffic, the absolute number of fatal accidents per year might increase, if the flight safety will not be improved. The collection of data and reporting systems have reached their top level. The focal point in increasing the flight safety is analysis. The air traffic has generally been forecasted to grow 5 – 6 per cent annually over the next two decades. During this period, the global air travel will probably double also with relatively conservative expectations of economic growth. This development makes the airline management confront growing pressure due to increasing competition, signify cant rise in fuel prices and the need to reduce the incident rate due to expected growth in air traffic volumes. All this emphasises the urgent need for new tools and methods. All systems provided encouraging results, as well as proved challenges still to be won. Flight safety can be improved through the development and utilisation of sophisticated analysis tools and methods, like data mining, using its results supporting the decision process of the executives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis we study the field of opinion mining by giving a comprehensive review of the available research that has been done in this topic. Also using this available knowledge we present a case study of a multilevel opinion mining system for a student organization's sales management system. We describe the field of opinion mining by discussing its historical roots, its motivations and applications as well as the different scientific approaches that have been used to solve this challenging problem of mining opinions. To deal with this huge subfield of natural language processing, we first give an abstraction of the problem of opinion mining and describe the theoretical frameworks that are available for dealing with appraisal language. Then we discuss the relation between opinion mining and computational linguistics which is a crucial pre-processing step for the accuracy of the subsequent steps of opinion mining. The second part of our thesis deals with the semantics of opinions where we describe the different ways used to collect lists of opinion words as well as the methods and techniques available for extracting knowledge from opinions present in unstructured textual data. In the part about collecting lists of opinion words we describe manual, semi manual and automatic ways to do so and give a review of the available lists that are used as gold standards in opinion mining research. For the methods and techniques of opinion mining we divide the task into three levels that are the document, sentence and feature level. The techniques that are presented in the document and sentence level are divided into supervised and unsupervised approaches that are used to determine the subjectivity and polarity of texts and sentences at these levels of analysis. At the feature level we give a description of the techniques available for finding the opinion targets, the polarity of the opinions about these opinion targets and the opinion holders. Also at the feature level we discuss the various ways to summarize and visualize the results of this level of analysis. In the third part of our thesis we present a case study of a sales management system that uses free form text and that can benefit from an opinion mining system. Using the knowledge gathered in the review of this field we provide a theoretical multi level opinion mining system (MLOM) that can perform most of the tasks needed from an opinion mining system. Based on the previous research we give some hints that many of the laborious market research tasks that are done by the sales force, which uses this sales management system, can improve their insight about their partners and by that increase the quality of their sales services and their overall results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Learning of preference relations has recently received significant attention in machine learning community. It is closely related to the classification and regression analysis and can be reduced to these tasks. However, preference learning involves prediction of ordering of the data points rather than prediction of a single numerical value as in case of regression or a class label as in case of classification. Therefore, studying preference relations within a separate framework facilitates not only better theoretical understanding of the problem, but also motivates development of the efficient algorithms for the task. Preference learning has many applications in domains such as information retrieval, bioinformatics, natural language processing, etc. For example, algorithms that learn to rank are frequently used in search engines for ordering documents retrieved by the query. Preference learning methods have been also applied to collaborative filtering problems for predicting individual customer choices from the vast amount of user generated feedback. In this thesis we propose several algorithms for learning preference relations. These algorithms stem from well founded and robust class of regularized least-squares methods and have many attractive computational properties. In order to improve the performance of our methods, we introduce several non-linear kernel functions. Thus, contribution of this thesis is twofold: kernel functions for structured data that are used to take advantage of various non-vectorial data representations and the preference learning algorithms that are suitable for different tasks, namely efficient learning of preference relations, learning with large amount of training data, and semi-supervised preference learning. Proposed kernel-based algorithms and kernels are applied to the parse ranking task in natural language processing, document ranking in information retrieval, and remote homology detection in bioinformatics domain. Training of kernel-based ranking algorithms can be infeasible when the size of the training set is large. This problem is addressed by proposing a preference learning algorithm whose computation complexity scales linearly with the number of training data points. We also introduce sparse approximation of the algorithm that can be efficiently trained with large amount of data. For situations when small amount of labeled data but a large amount of unlabeled data is available, we propose a co-regularized preference learning algorithm. To conclude, the methods presented in this thesis address not only the problem of the efficient training of the algorithms but also fast regularization parameter selection, multiple output prediction, and cross-validation. Furthermore, proposed algorithms lead to notably better performance in many preference learning tasks considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis in focused on the minimization of experimental efforts for the prediction of pollutant propagation in rivers by mathematical modelling and knowledge re-use. Mathematical modelling is based on the well known advection-dispersion equation, while the knowledge re-use approach employs the methods of case based reasoning, graphical analysis and text mining. The thesis contribution to the pollutant transport research field consists of: (1) analytical and numerical models for pollutant transport prediction; (2) two novel techniques which enable the use of variable parameters along rivers in analytical models; (3) models for the estimation of pollutant transport characteristic parameters (velocity, dispersion coefficient and nutrient transformation rates) as functions of water flow, channel characteristics and/or seasonality; (4) the graphical analysis method to be used for the identification of pollution sources along rivers; (5) a case based reasoning tool for the identification of crucial information related to the pollutant transport modelling; (6) and the application of a software tool for the reuse of information during pollutants transport modelling research. These support tools are applicable in the water quality research field and in practice as well, as they can be involved in multiple activities. The models are capable of predicting pollutant propagation along rivers in case of both ordinary pollution and accidents. They can also be applied for other similar rivers in modelling of pollutant transport in rivers with low availability of experimental data concerning concentration. This is because models for parameter estimation developed in the present thesis enable the calculation of transport characteristic parameters as functions of river hydraulic parameters and/or seasonality. The similarity between rivers is assessed using case based reasoning tools, and additional necessary information can be identified by using the software for the information reuse. Such systems represent support for users and open up possibilities for new modelling methods, monitoring facilities and for better river water quality management tools. They are useful also for the estimation of environmental impact of possible technological changes and can be applied in the pre-design stage or/and in the practical use of processes as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Presentation at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary: Using WordNet in information retrieval