4 resultados para Pulse durations
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This dissertation considers the segmental durations of speech from the viewpoint of speech technology, especially speech synthesis. The idea is that better models of segmental durations lead to higher naturalness and better intelligibility. These features are the key factors for better usability and generality of synthesized speech technology. Even though the studies are based on a Finnish corpus the approaches apply to all other languages as well. This is possibly due to the fact that most of the studies included in this dissertation are about universal effects taking place on utterance boundaries. Also the methods invented and used here are suitable for any other study of another language. This study is based on two corpora of news reading speech and sentences read aloud. The other corpus is read aloud by a 39-year-old male, whilst the other consists of several speakers in various situations. The use of two corpora is twofold: it involves a comparison of the corpora and a broader view on the matters of interest. The dissertation begins with an overview to the phonemes and the quantity system in the Finnish language. Especially, we are covering the intrinsic durations of phonemes and phoneme categories, as well as the difference of duration between short and long phonemes. The phoneme categories are presented to facilitate the problem of variability of speech segments. In this dissertation we cover the boundary-adjacent effects on segmental durations. In initial positions of utterances we find that there seems to be initial shortening in Finnish, but the result depends on the level of detail and on the individual phoneme. On the phoneme level we find that the shortening or lengthening only affects the very first ones at the beginning of an utterance. However, on average, the effect seems to shorten the whole first word on the word level. We establish the effect of final lengthening in Finnish. The effect in Finnish has been an open question for a long time, whilst Finnish has been the last missing piece for it to be a universal phenomenon. Final lengthening is studied from various angles and it is also shown that it is not a mere effect of prominence or an effect of speech corpus with high inter- and intra-speaker variation. The effect of final lengthening seems to extend from the final to the penultimate word. On a phoneme level it reaches a much wider area than the initial effect. We also present a normalization method suitable for corpus studies on segmental durations. The method uses an utterance-level normalization approach to capture the pattern of segmental durations within each utterance. This prevents the impact of various problematic variations within the corpora. The normalization is used in a study on final lengthening to show that the results on the effect are not caused by variation in the material. The dissertation shows an implementation and prowess of speech synthesis on a mobile platform. We find that the rule-based method of speech synthesis is a real-time software solution, but the signal generation process slows down the system beyond real time. Future aspects of speech synthesis on limited platforms are discussed. The dissertation considers ethical issues on the development of speech technology. The main focus is on the development of speech synthesis with high naturalness, but the problems and solutions are applicable to any other speech technology approaches.
Resumo:
Resonance energy transfer (RET) is a non-radiative transfer of the excitation energy from the initially excited luminescent donor to an acceptor. The requirements for the resonance energy transfer are: i) the spectral overlap between the donor emission spectrum and the acceptor absorption spectrum, ii) the close proximity of the donor and the acceptor, and iii) the suitable relative orientations of the donor emission and the acceptor absorption transition dipoles. As a result of the RET process the donor luminescence intensity and the donor lifetime are decreased. If the acceptor is luminescent, a sensitized acceptor emission appears. The rate of RET depends strongly on the donor–acceptor distance (r) and is inversely proportional to r6. The distance dependence of RET is utilized in binding assays. The proximity requirement and the selective detection of the RET-modified emission signal allow homogeneous separation free assays. The term lanthanide-based RET is used when luminescent lanthanide compounds are used as donors. The long luminescence lifetimes, the large Stokes’ shifts and the intense, sharply-spiked emission spectra of the lanthanide donors offer advantages over the conventional organic donor molecules. Both the organic lanthanide chelates and the inorganic up-converting phosphor (UCP) particles have been used as donor labels in the RET based binding assays. In the present work lanthanide luminescence and lanthanide-based resonance energy transfer phenomena were studied. Luminescence lifetime measurements had an essential role in the research. Modular frequency-domain and time-domain luminometers were assembled and used successfully in the lifetime measurements. The frequency-domain luminometer operated in the low frequency domain ( 100 kHz) and utilized a novel dual-phase lock-in detection of the luminescence. One of the studied phenomena was the recently discovered non-overlapping fluorescence resonance energy transfer (nFRET). The studied properties were the distance and temperature dependences of nFRET. The distance dependence was found to deviate from the Förster theory and a clear temperature dependence was observed whereas conventional RET was completely independent of the temperature. Based on the experimental results two thermally activated mechanisms were proposed for the nFRET process. The work with the UCP particles involved the measurement of the luminescence properties of the UCP particles synthesized in our laboratory. The goal of the UCP particle research is to develop UCP donor labels for binding assays. In the present work the effect of the dopant concentrations and the core–shell structure on the total up-conversion luminescence intensity, the red–green emission ratio, and the luminescence lifetime was studied. Also the non-radiative nature of the energy transfer from the UCP particle donors to organic acceptors was demonstrated for the first time in aqueous environment and with a controlled donor–acceptor distance.
Resumo:
High magnetic fields and extremely low temperatures are essential in the study of new semiconductor materials for example in the field of spintronics. Typical phenomenons that arise in such conditions are: Hall Effect, Anomalous Hall effect and Shubnikov de-Haas effect. In this thesis a device capable for such conditions was described. A strong magnetic field pulse generator situated in the laboratory of physics and the Lappeenranta University of Technology was studied. The device is introduced in three parts. First one is the pulsed field magnetic generator, which is responsible for generating the high magnetic field. Next one is the measurement systems, which are responsible for monitoring the sample and the system itself. The last part describes the cryostat system, which allows the extremely cold temperatures in the system.
Resumo:
Photosystem II (PSII) of oxygenic photosynthesis is susceptible to photoinhibition. Photoinhibition is defined as light induced damage resulting in turnover of the D1 protein subunit of the reaction center of PSII. Both visible and ultraviolet (UV) light cause photoinhibition. Photoinhibition induced by UV light damages the oxygen evolving complex (OEC) via absorption of UV photons by the Mn ion(s) of OEC. Under visible light, most of the earlier hypotheses assume that photoinhibition occurs when the rate of photon absorption by PSII antenna exceeds the use of the absorbed energy in photosynthesis. However, photoinhibition occurs at all light intensities with the same efficiency per photon. The aim of my thesis work was to build a model of photoinhibition that fits the experimental features of photoinhibition. I studied the role of electron transfer reactions of PSII in photoinhibition and found that changing the electron transfer rate had only minor influence on photoinhibition if light intensity was kept constant. Furthermore, quenching of antenna excitations protected less efficiently than it would protect if antenna chlorophylls were the only photoreceptors of photoinhibition. To identify photoreceptors of photoinhibition, I measured the action spectrum of photoinhibition. The action spectrum showed resemblance to the absorption spectra of Mn model compounds suggesting that the Mn cluster of OEC acts as a photoreceptor of photoinhibition under visible light, too. The role of Mn in photoinhibition was further supported by experiments showing that during photoinhibition OEC is damaged before electron transfer activity at the acceptor side of PSII is lost. Mn enzymes were found to be photosensitive under visible and UV light indicating that Mn-containing compounds, including OEC, are capable of functioning as photosensitizers both in visible and UV light. The experimental results above led to the Mn hypothesis of the mechanism of continuous-light-induced photoinhibition. According to the Mn hypothesis, excitation of Mn of OEC results in inhibition of electron donation from OEC to the oxidized primary donor P680+ both under UV and visible light. P680 is oxidized by photons absorbed by chlorophyll, and if not reduced by OEC, P680+ may cause harmful oxidation of other PSII components. Photoinhibition was also induced with intense laser pulses and it was found that the photoinhibitory efficiency increased in proportion to the square of pulse intensity suggesting that laser-pulse-induced photoinhibition is a two-photon reaction. I further developed the Mn hypothesis suggesting that the initial event in photoinhibition under both continuous and pulsed light is the same: Mn excitation that leads to the inhibition of electron donation from OEC to P680+. Under laser-pulse-illumination, another Mn-mediated inhibitory photoreaction occurs within the duration of the same pulse, whereas under continuous light, secondary damage is chlorophyll mediated. A mathematical model based on the Mn hypothesis was found to explain photoinhibition under continuous light, under flash illumination and under the combination of these two.