17 resultados para Previsão com Metodologia de Box-Jenkins

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tässä diplomityössä tutkittiin kysynnän ennustamista Vaasan & Vaasan Oy:n tuotteille. Ensin työssä perehdyttiin ennustamiseen ja sen tarjoamiin mahdollisuuksiin yrityksessä. Erityisesti kysynnän ennustamisesta saatavat hyödyt käytiin läpi. Kysynnän ennustamisesta haettiin ratkaisua erityisesti ongelmiin työvuorosuunnittelussa.Työssä perehdyttiin ennustemenetelmiin liittyvään kirjallisuuteen, jonka oppien perusteella tehtiin koe-ennustuksia yrityksen kysynnän historiadatan avulla. Koe-ennustuksia tehtiin kuudelle eri Turun leipomon koe-tuotteelle. Ennustettavana aikavälinä oli kahden viikon päiväkohtainen kysyntä. Tämän aikavälin erityisesti peruskysynnälle etsittiin ennustetarkkuudeltaan parasta kvantitatiivista ennustemenetelmää. Koe-ennustuksia tehtiin liukuvilla keskiarvoilla, klassisella aikasarja-analyysillä, eksponentiaalisen tasoituksen menetelmällä, Holtin lineaarisella eksponenttitasoituksen menetelmällä, Wintersin kausittaisella eksponentiaalisella tasoituksella, autoregressiivisillä malleilla, Box-Jenkinsin menetelmällä ja regressioanalyysillä. Myös neuroverkon opettamista historiadatalla ja käyttämistä ongelman ratkaisun apuna kokeiltiin.Koe-ennustuksien tulosten perusteella ennustemenetelmien toimintaa analysoitiin jatkokehitystä varten. Ennustetarkkuuden lisäksi arvioitiin mallin yksinkertaisuutta, helppokäyttöisyyttä ja sopivuutta yrityksen monien tuotteiden ennustamiseen. Myös kausivaihteluihin, trendeihin ja erikoispäiviin kiinnitettiin huomiota. Ennustetarkkuuden huomattiin parantuvan selvästi peruskysyntää ennustettaessa, jos ensin historiadata esikäsittelemällä puhdistettiin erikoispäivistä ja –viikoista.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electricity spot prices have always been a demanding data set for time series analysis, mostly because of the non-storability of electricity. This feature, making electric power unlike the other commodities, causes outstanding price spikes. Moreover, the last several years in financial world seem to show that ’spiky’ behaviour of time series is no longer an exception, but rather a regular phenomenon. The purpose of this paper is to seek patterns and relations within electricity price outliers and verify how they affect the overall statistics of the data. For the study techniques like classical Box-Jenkins approach, series DFT smoothing and GARCH models are used. The results obtained for two geographically different price series show that patterns in outliers’ occurrence are not straightforward. Additionally, there seems to be no rule that would predict the appearance of a spike from volatility, while the reverse effect is quite prominent. It is concluded that spikes cannot be predicted based only on the price series; probably some geographical and meteorological variables need to be included in modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification of order of an Autoregressive Moving Average Model (ARMA) by the usual graphical method is subjective. Hence, there is a need of developing a technique to identify the order without employing the graphical investigation of series autocorrelations. To avoid subjectivity, this thesis focuses on determining the order of the Autoregressive Moving Average Model using Reversible Jump Markov Chain Monte Carlo (RJMCMC). The RJMCMC selects the model from a set of the models suggested by better fitting, standard deviation errors and the frequency of accepted data. Together with deep analysis of the classical Box-Jenkins modeling methodology the integration with MCMC algorithms has been focused through parameter estimation and model fitting of ARMA models. This helps to verify how well the MCMC algorithms can treat the ARMA models, by comparing the results with graphical method. It has been seen that the MCMC produced better results than the classical time series approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Time series analysis can be categorized into three different approaches: classical, Box-Jenkins, and State space. Classical approach makes a basement for the analysis and Box-Jenkins approach is an improvement of the classical approach and deals with stationary time series. State space approach allows time variant factors and covers up a broader area of time series analysis. This thesis focuses on parameter identifiablity of different parameter estimation methods such as LSQ, Yule-Walker, MLE which are used in the above time series analysis approaches. Also the Kalman filter method and smoothing techniques are integrated with the state space approach and MLE method to estimate parameters allowing them to change over time. Parameter estimation is carried out by repeating estimation and integrating with MCMC and inspect how well different estimation methods can identify the optimal model parameters. Identification is performed in probabilistic and general senses and compare the results in order to study and represent identifiability more informative way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Artikkeli on vastine Sari Husan Aikuiskasvatus-lehden numerossa 4/95 julkaistuun kirjoittajan väitöskirjaa käsittelevään kirjoitukseen

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Q methodology in political science: expert debate on the EU's Northern dimension as an example

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kirjallisuusarvostelu

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kuvataidenäyttely Galleria Forum Boxissa Helsingissä Riikka Kuoppalan, Pekka Niskasen kanssa. Videoteokset Yksi ja monta (One and Many) ja Nitan King (Nita´s King), 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The focus of the present work was on 10- to 12-year-old elementary school students’ conceptual learning outcomes in science in two specific inquiry-learning environments, laboratory and simulation. The main aim was to examine if it would be more beneficial to combine than contrast simulation and laboratory activities in science teaching. It was argued that the status quo where laboratories and simulations are seen as alternative or competing methods in science teaching is hardly an optimal solution to promote students’ learning and understanding in various science domains. It was hypothesized that it would make more sense and be more productive to combine laboratories and simulations. Several explanations and examples were provided to back up the hypothesis. In order to test whether learning with the combination of laboratory and simulation activities can result in better conceptual understanding in science than learning with laboratory or simulation activities alone, two experiments were conducted in the domain of electricity. In these experiments students constructed and studied electrical circuits in three different learning environments: laboratory (real circuits), simulation (virtual circuits), and simulation-laboratory combination (real and virtual circuits were used simultaneously). In order to measure and compare how these environments affected students’ conceptual understanding of circuits, a subject knowledge assessment questionnaire was administered before and after the experimentation. The results of the experiments were presented in four empirical studies. Three of the studies focused on learning outcomes between the conditions and one on learning processes. Study I analyzed learning outcomes from experiment I. The aim of the study was to investigate if it would be more beneficial to combine simulation and laboratory activities than to use them separately in teaching the concepts of simple electricity. Matched-trios were created based on the pre-test results of 66 elementary school students and divided randomly into a laboratory (real circuits), simulation (virtual circuits) and simulation-laboratory combination (real and virtual circuits simultaneously) conditions. In each condition students had 90 minutes to construct and study various circuits. The results showed that studying electrical circuits in the simulation–laboratory combination environment improved students’ conceptual understanding more than studying circuits in simulation and laboratory environments alone. Although there were no statistical differences between simulation and laboratory environments, the learning effect was more pronounced in the simulation condition where the students made clear progress during the intervention, whereas in the laboratory condition students’ conceptual understanding remained at an elementary level after the intervention. Study II analyzed learning outcomes from experiment II. The aim of the study was to investigate if and how learning outcomes in simulation and simulation-laboratory combination environments are mediated by implicit (only procedural guidance) and explicit (more structure and guidance for the discovery process) instruction in the context of simple DC circuits. Matched-quartets were created based on the pre-test results of 50 elementary school students and divided randomly into a simulation implicit (SI), simulation explicit (SE), combination implicit (CI) and combination explicit (CE) conditions. The results showed that when the students were working with the simulation alone, they were able to gain significantly greater amount of subject knowledge when they received metacognitive support (explicit instruction; SE) for the discovery process than when they received only procedural guidance (implicit instruction: SI). However, this additional scaffolding was not enough to reach the level of the students in the combination environment (CI and CE). A surprising finding in Study II was that instructional support had a different effect in the combination environment than in the simulation environment. In the combination environment explicit instruction (CE) did not seem to elicit much additional gain for students’ understanding of electric circuits compared to implicit instruction (CI). Instead, explicit instruction slowed down the inquiry process substantially in the combination environment. Study III analyzed from video data learning processes of those 50 students that participated in experiment II (cf. Study II above). The focus was on three specific learning processes: cognitive conflicts, self-explanations, and analogical encodings. The aim of the study was to find out possible explanations for the success of the combination condition in Experiments I and II. The video data provided clear evidence about the benefits of studying with the real and virtual circuits simultaneously (the combination conditions). Mostly the representations complemented each other, that is, one representation helped students to interpret and understand the outcomes they received from the other representation. However, there were also instances in which analogical encoding took place, that is, situations in which the slightly discrepant results between the representations ‘forced’ students to focus on those features that could be generalised across the two representations. No statistical differences were found in the amount of experienced cognitive conflicts and self-explanations between simulation and combination conditions, though in self-explanations there was a nascent trend in favour of the combination. There was also a clear tendency suggesting that explicit guidance increased the amount of self-explanations. Overall, the amount of cognitive conflicts and self-explanations was very low. The aim of the Study IV was twofold: the main aim was to provide an aggregated overview of the learning outcomes of experiments I and II; the secondary aim was to explore the relationship between the learning environments and students’ prior domain knowledge (low and high) in the experiments. Aggregated results of experiments I & II showed that on average, 91% of the students in the combination environment scored above the average of the laboratory environment, and 76% of them scored also above the average of the simulation environment. Seventy percent of the students in the simulation environment scored above the average of the laboratory environment. The results further showed that overall students seemed to benefit from combining simulations and laboratories regardless of their level of prior knowledge, that is, students with either low or high prior knowledge who studied circuits in the combination environment outperformed their counterparts who studied in the laboratory or simulation environment alone. The effect seemed to be slightly bigger among the students with low prior knowledge. However, more detailed inspection of the results showed that there were considerable differences between the experiments regarding how students with low and high prior knowledge benefitted from the combination: in Experiment I, especially students with low prior knowledge benefitted from the combination as compared to those students that used only the simulation, whereas in Experiment II, only students with high prior knowledge seemed to benefit from the combination relative to the simulation group. Regarding the differences between simulation and laboratory groups, the benefits of using a simulation seemed to be slightly higher among students with high prior knowledge. The results of the four empirical studies support the hypothesis concerning the benefits of using simulation along with laboratory activities to promote students’ conceptual understanding of electricity. It can be concluded that when teaching students about electricity, the students can gain better understanding when they have an opportunity to use the simulation and the real circuits in parallel than if they have only the real circuits or only a computer simulation available, even when the use of the simulation is supported with the explicit instruction. The outcomes of the empirical studies can be considered as the first unambiguous evidence on the (additional) benefits of combining laboratory and simulation activities in science education as compared to learning with laboratories and simulations alone.