19 resultados para Prediction by neural networks

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deflection compensation of flexible boom structures in robot positioning is usually done using tables containing the magnitude of the deflection with inverse kinematics solutions of a rigid structure. The number of table values increases greatly if the working area of the boom is large and the required positioning accuracy is high. The inverse kinematics problems are very nonlinear, and if the structure is redundant, in some cases it cannot be solved in a closed form. If the structural flexibility of the manipulator arms is taken into account, the problem is almost impossible to solve using analytical methods. Neural networks offer a possibility to approximate any linear or nonlinear function. This study presents four different methods of using neural networks in the static deflection compensation and inverse kinematics solution of a flexible hydraulically driven manipulator. The training information required for training neural networks is obtained by employing a simulation model that includes elasticity characteristics. The functionality of the presented methods is tested based on the simulated and measured results of positioning accuracy. The simulated positioning accuracy is tested in 25 separate coordinate points. For each point, the positioning is tested with five different mass loads. The mean positioning error of a manipulator decreased from 31.9 mm to 4.1 mm in the test points. This accuracy enables the use of flexible manipulators in the positioning of larger objects. The measured positioning accuracy is tested in 9 separate points using three different mass loads. The mean positioning error decreased from 10.6 mm to 4.7 mm and the maximum error from 27.5 mm to 11.0 mm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research is to draw up a clear construction of an anticipatory communicative decision-making process and a successful implementation of a Bayesian application that can be used as an anticipatory communicative decision-making support system. This study is a decision-oriented and constructive research project, and it includes examples of simulated situations. As a basis for further methodological discussion about different approaches to management research, in this research, a decision-oriented approach is used, which is based on mathematics and logic, and it is intended to develop problem solving methods. The approach is theoretical and characteristic of normative management science research. Also, the approach of this study is constructive. An essential part of the constructive approach is to tie the problem to its solution with theoretical knowledge. Firstly, the basic definitions and behaviours of an anticipatory management and managerial communication are provided. These descriptions include discussions of the research environment and formed management processes. These issues define and explain the background to further research. Secondly, it is processed to managerial communication and anticipatory decision-making based on preparation, problem solution, and solution search, which are also related to risk management analysis. After that, a solution to the decision-making support application is formed, using four different Bayesian methods, as follows: the Bayesian network, the influence diagram, the qualitative probabilistic network, and the time critical dynamic network. The purpose of the discussion is not to discuss different theories but to explain the theories which are being implemented. Finally, an application of Bayesian networks to the research problem is presented. The usefulness of the prepared model in examining a problem and the represented results of research is shown. The theoretical contribution includes definitions and a model of anticipatory decision-making. The main theoretical contribution of this study has been to develop a process for anticipatory decision-making that includes management with communication, problem-solving, and the improvement of knowledge. The practical contribution includes a Bayesian Decision Support Model, which is based on Bayesian influenced diagrams. The main contributions of this research are two developed processes, one for anticipatory decision-making, and the other to produce a model of a Bayesian network for anticipatory decision-making. In summary, this research contributes to decision-making support by being one of the few publicly available academic descriptions of the anticipatory decision support system, by representing a Bayesian model that is grounded on firm theoretical discussion, by publishing algorithms suitable for decision-making support, and by defining the idea of anticipatory decision-making for a parallel version. Finally, according to the results of research, an analysis of anticipatory management for planned decision-making is presented, which is based on observation of environment, analysis of weak signals, and alternatives to creative problem solving and communication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this master’s thesis, wind speeds and directions were modeled with the aim of developing suitable models for hourly, daily, weekly and monthly forecasting. Artificial Neural Networks implemented in MATLAB software were used to perform the forecasts. Three main types of artificial neural network were built, namely: Feed forward neural networks, Jordan Elman neural networks and Cascade forward neural networks. Four sub models of each of these neural networks were also built, corresponding to the four forecast horizons, for both wind speeds and directions. A single neural network topology was used for each of the forecast horizons, regardless of the model type. All the models were then trained with real data of wind speeds and directions collected over a period of two years in the municipal region of Puumala in Finland. Only 70% of the data was used for training, validation and testing of the models, while the second last 15% of the data was presented to the trained models for verification. The model outputs were then compared to the last 15% of the original data, by measuring the mean square errors and sum square errors between them. Based on the results, the feed forward networks returned the lowest generalization errors for hourly, weekly and monthly forecasts of wind speeds; Jordan Elman networks returned the lowest errors when used for forecasting of daily wind speeds. Cascade forward networks gave the lowest errors when used for forecasting daily, weekly and monthly wind directions; Jordan Elman networks returned the lowest errors when used for hourly forecasting. The errors were relatively low during training of the models, but shot up upon simulation with new inputs. In addition, a combination of hyperbolic tangent transfer functions for both hidden and output layers returned better results compared to other combinations of transfer functions. In general, wind speeds were more predictable as compared to wind directions, opening up opportunities for further research into building better models for wind direction forecasting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Convolutional Neural Networks (CNN) have become the state-of-the-art methods on many large scale visual recognition tasks. For a lot of practical applications, CNN architectures have a restrictive requirement: A huge amount of labeled data are needed for training. The idea of generative pretraining is to obtain initial weights of the network by training the network in a completely unsupervised way and then fine-tune the weights for the task at hand using supervised learning. In this thesis, a general introduction to Deep Neural Networks and algorithms are given and these methods are applied to classification tasks of handwritten digits and natural images for developing unsupervised feature learning. The goal of this thesis is to find out if the effect of pretraining is damped by recent practical advances in optimization and regularization of CNN. The experimental results show that pretraining is still a substantial regularizer, however, not a necessary step in training Convolutional Neural Networks with rectified activations. On handwritten digits, the proposed pretraining model achieved a classification accuracy comparable to the state-of-the-art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this thesis, we propose to infer pixel-level labelling in video by utilising only object category information, exploiting the intrinsic structure of video data. Our motivation is the observation that image-level labels are much more easily to be acquired than pixel-level labels, and it is natural to find a link between the image level recognition and pixel level classification in video data, which would transfer learned recognition models from one domain to the other one. To this end, this thesis proposes two domain adaptation approaches to adapt the deep convolutional neural network (CNN) image recognition model trained from labelled image data to the target domain exploiting both semantic evidence learned from CNN, and the intrinsic structures of unlabelled video data. Our proposed approaches explicitly model and compensate for the domain adaptation from the source domain to the target domain which in turn underpins a robust semantic object segmentation method for natural videos. We demonstrate the superior performance of our methods by presenting extensive evaluations on challenging datasets comparing with the state-of-the-art methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Huolimatta korkeasta automaatioasteesta sorvausteollisuudessa, muutama keskeinen ongelma estää sorvauksen täydellisen automatisoinnin. Yksi näistä ongelmista on työkalun kuluminen. Tämä työ keskittyy toteuttamaan automaattisen järjestelmän kulumisen, erityisesti viistekulumisen, mittaukseen konenäön avulla. Kulumisen mittausjärjestelmä poistaa manuaalisen mittauksen tarpeen ja minimoi ajan, joka käytetään työkalun kulumisen mittaukseen. Mittauksen lisäksi tutkitaan kulumisen mallinnusta sekä ennustamista. Automaattinen mittausjärjestelmä sijoitettiin sorvin sisälle ja järjestelmä integroitiin onnistuneesti ulkopuolisten järjestelmien kanssa. Tehdyt kokeet osoittivat, että mittausjärjestelmä kykenee mittaamaan työkalun kulumisen järjestelmän oikeassa ympäristössä. Mittausjärjestelmä pystyy myös kestämään häiriöitä, jotka ovat konenäköjärjestelmille yleisiä. Työkalun kulumista mallinnusta tutkittiin useilla eri menetelmillä. Näihin kuuluivat muiden muassa neuroverkot ja tukivektoriregressio. Kokeet osoittivat, että tutkitut mallit pystyivät ennustamaan työkalun kulumisasteen käytetyn ajan perusteella. Parhaan tuloksen antoivat neuroverkot Bayesiläisellä regularisoinnilla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis deals with the phenomenon of learning between organizations in innovation networks that develop new products, services or processes. Inter organizational learning is studied especially at the level of the network. The role of the network can be seen as twofold: either the network is a context for inter organizational learning, if the learner is something else than the network (organization, group, individual), or the network itself is the learner. Innovations are regarded as a primary source of competitiveness and renewal in organizations. Networking has become increasingly common particularly because of the possibility to extend the resource base of the organization through partnerships and to concentrate on core competencies. Especially in innovation activities, networks provide the possibility to answer the complex needs of the customers faster and to share the costs and risks of the development work. Networked innovation activities are often organized in practice as distributed virtual teams, either within one organization or as cross organizational co operation. The role of technology is considered in the research mainly as an enabling tool for collaboration and learning. Learning has been recognized as one important collaborative process in networks or as a motivation for networking. It is even more important in the innovation context as an enabler of renewal, since the essence of the innovation process is creating new knowledge, processes, products and services. The thesis aims at providing enhanced understanding about the inter organizational learning phenomenon in and by innovation networks, especially concentrating on the network level. The perspectives used in the research are the theoretical viewpoints and concepts, challenges, and solutions for learning. The methods used in the study are literature reviews and empirical research carried out with semi structured interviews analyzed with qualitative content analysis. The empirical research concentrates on two different areas, firstly on the theoretical approaches to learning that are relevant to innovation networks, secondly on learning in virtual innovation teams. As a result, the research identifies insights and implications for learning in innovation networks from several viewpoints on organizational learning. Using multiple perspectives allows drawing a many sided picture of the learning phenomenon that is valuable because of the versatility and complexity of situations and challenges of learning in the context of innovation and networks. The research results also show some of the challenges of learning and possible solutions for supporting especially network level learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of the research is to define practical profit which can be achieved using neural network methods as a prediction instrument. The thesis investigates the ability of neural networks to forecast future events. This capability is checked on the example of price prediction during intraday trading on stock market. The executed experiments show predictions of average 1, 2, 5 and 10 minutes’ prices based on data of one day and made by two different types of forecasting systems. These systems are based on the recurrent neural networks and back propagation neural nets. The precision of the predictions is controlled by the absolute error and the error of market direction. The economical effectiveness is estimated by a special trading system. In conclusion, the best structures of neural nets are tested with data of 31 days’ interval. The best results of the average percent of profit from one transaction (buying + selling) are 0.06668654, 0.188299453, 0.349854787 and 0.453178626, they were achieved for prediction periods 1, 2, 5 and 10 minutes. The investigation can be interesting for the investors who have access to a fast information channel with a possibility of every-minute data refreshment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to the large number of characteristics, there is a need to extract the most relevant characteristicsfrom the input data, so that the amount of information lost in this way is minimal, and the classification realized with the projected data set is relevant with respect to the original data. In order to achieve this feature extraction, different statistical techniques, as well as the principal components analysis (PCA) may be used. This thesis describes an extension of principal components analysis (PCA) allowing the extraction ofa finite number of relevant features from high-dimensional fuzzy data and noisy data. PCA finds linear combinations of the original measurement variables that describe the significant variation in the data. The comparisonof the two proposed methods was produced by using postoperative patient data. Experiment results demonstrate the ability of using the proposed two methods in complex data. Fuzzy PCA was used in the classificationproblem. The classification was applied by using the similarity classifier algorithm where total similarity measures weights are optimized with differential evolution algorithm. This thesis presents the comparison of the classification results based on the obtained data from the fuzzy PCA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diplomityön teoriaosassa tutkittiin monimedian jakelukanavia ja niiden ominaisuuksia sisältöpalveluissa. Työssä esiteltiin keinoja älykkyyden lisäämiseksi monnimediasisältötuotannossa sekä tarkasteltiin sisältöpalvelujen käytettävyyttä. Työssä keskityttiin neuroverkkoteknologiaan, sen toteuttamiseen sekä ohjelmisto-agentteihin. Empiirisessä osassa tutustuttiin työministeriön AVO-ammatinvalintaohjelman toimintaan. Työssä määriteltiin Excel-taulukkoon 280 ammatin ominaisuudet, jotka pohjautuivat AVO:n 122 kysymykseen. Työministeriöstä on saatu 5115 henkilön vastaukset AVO-ammatinvalintaohjelman kysymyksiin. Tätä vastausaineistoa ja tutkimuksessa laadittua ammattitaulukkoa käytettiin neuroverkon opettamiseen. Lopuksi analysoitiin SOM-karttoja. Analyysin tarkoituksena oli tutkia laaditun ammattitaulukon oikeellisuutta ja eri ammattien sijoittumista SOM-kartalle. Tutkimus osoitti, että neuroverkkoteknologia soveltuisi uuden urasuunnittelupalvelun ydinteknologiaksi.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Suomen ilmatilaa valvotaan reaaliaikaisesti, pääasiassa ilmavalvontatutkilla. Ilmatilassa on lentokoneiden lisäksi paljon muitakin kohteita, jotka tutka havaitsee. Tutka lähettää nämä tiedot edelleen ilmavalvontajärjestelmään. Ilmavalvontajärjestelmä käsittelee tiedot, sekä lähettää ne edelleen esitysjärjestelmään. Esitysjärjestelmässä tiedot esitetään synteettisinä merkkeinä, seurantoina joista käytetään nimitystä träkki. Näiden tietojen puitteissa sekä oman ammattitaitonsa perusteella ihmiset tekevät päätöksiä. Tämän työn tarkoituksena on tutkia tutkan havaintoja träkkien initialisointipisteessä siten, että voitaisiin määritellä tyypillinen rakenne sille mikä on oikea ja mikä väärä tai huono träkki. Tämän lisäksi tulisi ennustaa, mitkä Irakeista eivät aiheudu ilma- aluksista. Saadut tulokset voivat helpottaa työtä havaintojen tulkinnassa - jokainen lintuparvi ei ole ehdokas seurannaksi. Havaintojen luokittelu voidaan tehdä joko neurolaskennalla tai päätöspuulla. Neurolaskenta tehdään neuroverkoilla, jotka koostuvat neuroneista. Päätöspuu- luokittelijat ovat oppivia tietorakenteita kuten neuroverkotkin. Yleisin päätöpuu on binääripuu. Tämän työn tavoitteena on opettaa päätöspuuluokittelija havaintojen avulla siten, että se pystyy luokittelemaan väärät havainnot oikeista. Neurolaskennan mahdollisuuksia tässä työssä ei käsitellä kuin teoreettisesti. Työn tuloksena voi todeta, että päätöspuuluokittelijat ovat erittäin kykeneviä erottamaan oikeat havainnot vääristä. Vaikka tulokset olivat rohkaiseva, lisää tutkimusta tarvitaan määrittelemään luotettavammin tekijät, jotka parhaiten suorittavat luokittelun.