3 resultados para Preconditioned Conjugate Gradient Method
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.
Resumo:
Hakeperävaunun rungon esikorotuksen suuruutta laskennallisesti ei ollut aiemmin määritet-ty Konepaja Antti Ranta Oy:ssä. Hakeperävaunun runko on valmistettu teräksestä. Tutki-muksessa luoduilla laskentamalleilla selvitettiin viisiakselisen hakeperävaunun rungon pys-tysuuntainen taipuma kuormitettuna. Tutkimus suoritettiin laskemalla hakeperävaunun pystysuuntainen siirtymä 42 tonnin ja 36 tonnin kokonaismassojen kuormituksilla hakeperävaunun rungon pituuden suhteen. Käsin-laskentamenetelmä on tässä tutkimuksessa englannin kieliseltä nimeltään conjugate beam method, suoraan käännettynä konjugaattipalkkimenetelmä. FE-analyysia sovellettiin kah-della eri laskentamallilla; käsinlaskentaa vertailevalla ja todellista hakeperävaunun runkoa vertailevilla FE-analyyseilla. Tutkimuksessa käytettyjen eri laskentatapojen tulokset vastasivat toisiaan sekä 42 tonnin että 36 tonnin kokonaismassojen kuormituksilla. Esikorotus määritettiin 42 tonnin koko-naismassalla kuormitetun todellista hakeperävaunun runkoa vastaavan 3D-mallin pysty-suuntaisesta taipumasta, josta luotiin esikorotettu hakeperävaunun rungon 3D-malli. Tutkimuksessa kehitettyjä laskentamalleja voidaan tulevaisuudessa käyttää yrityksen tuo-tekehityksessä. Esikorotuksella voidaan kompensoida pystysuuntaista taipumaa, jos esiko-rotuksesta ei ole haittaa itse rakenteelle.