7 resultados para Pre-dawn leaf water potencial
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Summary
Resumo:
Suojakaasupakkaaminen (MAP) on yleistynyt viime aikoina, koska sen avulla voidaan säilöä tuoreita tai vähän käsiteltyjä elintarvikkeita pidempään. Suurin syy hyllyiän pidentymiseen on hiilidioksidin aiheuttama mikrobien kasvun hidastuminen. Toisaalta huolena on patogeenisten mikrobien lisääntyminen anaerobisissa olosuhteissa. Pidempi säilyvyys voidaan saavuttaa myös käyttämällä vähemmän lisä- ja säilöntäaineita. Samalla suojakaasupakkaaminen kuitenkin vähentää myös pilaantuneiden tuotteiden määrää. Eniten suojakaasua käytetään lihan pakkaamisessa. Suojakaasupakkaamisessa elintarvikepakkaukseen syötetään normaalista huoneilmasta poikkeava kaasuseos. Pääasiassa kaasuseos koostuu hiilidioksidista, hapesta ja typestä. Lisäksi voidaan käyttää pieniä määriä hiilimonoksidia, argonia ja rikkidioksidia. Kaasuseoksen koostumus määräytyy elintarvikkeiden ominaisuuksien ja vaatimusten perusteella. Halutun kaasukoostumuksen tulee säilyä pakkauksessa muutamasta päivästä muutamaan kuukauteen riippuen elintarvikkeesta. Siksi tärkein pakkaukselta vaadittava ominaisuus on riittävä kaasutiiveys ja erityisesti hapenläpäisevyys. Koska suurin osa suojakaasupakkauksista on tällä hetkellä muovisia, tutkittiin kokeellisessa osiossa kartonkipakkausten tiiveysominaisuuksia. Kokeet tehtiin vertailemalla erilaisten vuoka- ja kansimateriaalien vaikutusta pakkausten tiiveyteen. Vuokien onnistuminen oli suurin yksittäinen tuloksiin vaikuttanut tekijä. Epäonnistuneen vuoan vaikutukset näkyivät myös saumauksessa, koska saumaustyökalun ja vuoan piti sopia yhteen. Lisäksi näkymättömät mikroreiät hankaloittivat todellisten vuotokohtien paikallistamista. Vuototestausten perusteella materiaaleille löydettiin kuitenkin viitteelliset optimiparametrit. Tärkein saumauksessa vaikuttanut tekijä oli sopivan saumauslämpötilan valinta. Prässättyjen vuokien laatu oli epätasainen. Siksi erityisesti rinnakkaisten kansitus- ja hapenläpäisymittausten väliset erot olivat merkitseviä. Lisäksi prässäys laski materiaalien hapenläpäisyominaisuuksia. Yksittäisten vuokien tiiveysominaisuudet täyttivät kuitenkin kaupallisille kaasupakkauksille asetetut vaatimukset. Vesihöyrynläpäisevyydessä materiaalin vesihöyrynläpäisy oli merkittävämpää kuin vesihöyryn kulkeutuminen vuotokohtien tai epäonnistuneiden saumojen kautta.
Resumo:
The amount of water available is usually restricted, which leads to a situation where a complete understanding of the process, including water circulations and the influence of water components, is essential. The main aim of this thesis was to clarify the possibilities for the efficient use of residual peroxide by means of water circulation rearrangements. Rearranging water circulations and the reduction of water usage may cause new problems, such as metal induced peroxide decomposition that needs to be addressed. This thesis introduces theoretical methods of water circulations to combine two variables; effective utilization of residual peroxide and avoiding manganese in the alkaline peroxide bleaching stage. Results are mainly based on laboratory and mill site experiments concerning the utilization of residual peroxide. A simulation model (BALAS) was used to evaluate the manganese contents and residual peroxide doses. It was shown that with optimum recirculation of residual peroxide the brightness can be improved or chemical costs can be decreased. From the scientific perspective, it was also very important to discover that recycled peroxide was more effective pre-bleaching agent compared to fresh peroxide. This can be due to the organic acids i.e. per acetic acid in wash press filtrate that have been formed in alkaline bleaching stage. Even short retention time was adequate and the activation of residual peroxide using sodium hydroxide was not necessary. There are several possibilities for using residual peroxide in practice regarding bleaching. A typical modern mechanical pulping process line consist of defibering, screening, a disc filter, a bleach press, high consistency (HC) peroxide bleaching and a wash press. Furthermore there usually is not a particular medium consistency (MC) pre-bleaching stage that includes additional thickening equipment. The most advisable way to utilize residual peroxide in this kind of process is to recycle the wash press filtrate to the dilution of disc filter pulp (low MC pre-bleaching stage). An arrangement such as this would be beneficial in terms of the reduced convection of manganese to the alkaline bleaching stage. Manganese originates from wood material and will be removed to the water phase already in the early stages of the process. Recycling residual peroxide prior to the disc filter is not recommended because of low consistencies. Regarding water circulations, the novel point of view is that, it would be beneficial to divide water circulations into two sections and the critical location for the division is the disc filter. Both of these two sections have their own priority. Section one before the disc filter: manganese removal. Section two after the disc filter: brightening of pulp. This division can be carried out if the disc filter pulp is diluted only by wash press filtrate before the MC storage tower. The situation is even better if there is an additional press after the disc filter, which will improve the consistency of the pulp. This has a significant effect on the peroxide concentration in the MC pre-bleaching stage. In terms of manganese content, it is essential to avoid the use of disc filter filtrate in the bleach press and wash press showers. An additional cut-off press would also be beneficial for manganese removal. As a combination of higher initial brightness and lower manganese content, the typical brightness increase varies between approximately 0.5 and 1% ISO units after the alkaline peroxide bleaching stage. This improvement does not seem to be remarkable, but as it is generally known, the final brightness unit is the most expensive and difficult to achieve. The estimation of cost savings is not unambiguous. For example in GW/TMP mill case 0.6% ISO units higher final brightness gave 10% savings in the costs of bleaching chemicals. With an hypothetical 200 000 ton annual production, this means that the mill could save in the costs of bleaching chemicals more than 400 000 euros per year. In general, it can be said that there were no differences between the behavior of different types of processes (GW, PGW, TMP and BCTMP). The enhancement of recycling gave a similar response in all cases. However, we have to remember that the utilization of residual peroxide in older mills depends a great deal on the process equipment, the amount of water available and existing pipeline connections. In summary, it can be said that processes are individual and the same solutions cannot be applied to all cases.
Resumo:
Photosynthetic reactions are divided in two parts: light-driven electron transfer reactions and carbon fixation reactions. Electron transfer reactions capture solar energy and split water molecules to form reducing energy (NADPH) and energy-carrying molecules (ATP). These end-products are used for fixation of inorganic carbon dioxide into organic sugar molecules. Ferredoxin-NADP+ oxidoreductase (FNR) is an enzyme that acts at the branch point between the electron transfer reactions and reductive metabolism by catalyzing reduction of NADP+ at the last step of the electron transfer chain. In this thesis, two isoforms of FNR from A rabidopsis thaliana, FNR1 and FNR2, were characterized using the reverse genetics approach. The fnr1 and fnr2 mutant plants resembled each other in many respects. Downregulation of photosynthesis protected the single fnr mutant plants from excess formation of reactive oxygen species (ROS), even without significant upregulation of antioxidative mechanisms. Adverse growth conditions, however, resulted in phenotypic differences between fnr1 and fnr2. While fnr2 plants showed downregulation of photosynthetic complexes and upregulation of antioxidative mechanisms under low-temperature growth conditions, fnr1 plants had the wild-type phenotype, indicating that FNR2 may have a specific role in redistribution of electrons under unfavorable conditions. The heterozygotic double mutant (fnr1xfnr2) was severely devoid of chloroplastic FNR, which clearly restricted photosynthesis. The fnr1xfnr2 plants used several photoprotective mechanisms to avoid oxidative stress. In wild-type chloroplasts, both FNR isoforms were found from the stroma, the thylakoid membrane, and the inner envelope membrane. In the absence of the FNR1 isoform, FNR2 was found only in the stroma, suggesting that FNR1 and FNR2 form a dimer, by which FNR1 anchors FNR2 to the thylakoid membrane. Structural modeling predicted formation of an FNR dimer in complex with ferredoxin. In this thesis work, Tic62 was found to be the main protein that binds FNR to the thylakoid membrane, where Tic62 and FNR formed high molecular weight complexes. The formation of such complexes was shown to be regulated by the redox state of the chloroplast. The accumulation of Tic62-FNR complexes in darkness and dissociation of complexes from the membranes in light provide evidence that the complexes may have roles unrelated to photosynthesis. This and the high viability of fnr1 mutant plants lacking thylakoid-bound FNR indicate that the stromal pool of FNR is photosynthetically active.
Resumo:
The Theorica Pantegni is a medieval medical textbook written in Latin. The author was Constantine the African (Constantinus Africanus), a monk of Tunisian origin. He compiled the work in the latter half of the eleventh century at the Benedictine monastery of Monte Cassino in Italy. - Manuscript Eö.II.14, containing the Theorica Pantegni published here, belongs today to the National Library of Finland. It can be dated to the third quarter of the twelfth century, which makes it one of the earliest surviving exemplars of the Theorica Pantegni: over seventy manuscripts of the work survive, of which about fifteen can be dated to the twelfth century. Manuscript Eö.II.14 is written in black ink on 210 parchment leaves (recto and verso), amounting to 420 pages, in pre-Gothic script. - The present text is a transcription of Ms Eö.II.14. The goal is to provide the reader with an accessible text that is faithful to the original.
Resumo:
Different types of laterally extensive sand- and gravel-dominated deposits, up to several tens of metres thick, were investigated in the Suupohja area of western Finland. The studied sediments were deposited in glacial, ice-marginal, glaciofluvial, sea or lake, littoral and terrestrial environments during several glacial-non-glacial cycles. Seventeen pre-Late Weichselian and three Late Weichselian/Holocene sedimentary units were identified. These were divided into ten formally and two informally defined formations that were together termed the Suupohja Group. Every unit are nevertheless not detectable throughout the study area. The informally defined “Karhukangas lower deposits” represent the lowest units in the Suupohja Group. The Karhukangas lower deposits with 5 till units, 3 glaciolacustrine/-marine units and 2 sand units, were interpreted as having been deposited during possibly four glacial-non-glacial cycles before the Late Pleistocene Subepoch (MIS 6 or earlier). The Kankalo Sand above the Karhukangas lower deposits comprises glaciofluvial and aeolian sands of Late Saalian, Eemian or Early Weichselian origin (MIS 6–MIS 5c). The Kariluoma Till above the Kankalo Sand was possibly deposited during the Late Saalian glacial advance, although an Early Weichselian origin is also possible. The Harrinkangas Formation, with glaciofluvial and quiet-water sediments, is interpreted as having been deposited during the Late Saalian and Eemian Stages (MIS 6–MIS 5e). The uppermost units in the deposits studied, the Kodesjärvi Formation (shore deposit), Isojoki Sand (aeolian), Rävåsen Formation (glaciofluvial), Vanhakylä Formation (shore line deposit), Dagsmark Till and Kauhajoki Till, were deposited during the Weichselian Stage (MIS 5d–MIS 2). In addition, Early Holocene (MIS 1) eskers without till cover were informally termed the “Holocene esker deposits”. The Lumikangas Formation represents gravelly shore deposits formed in the Holocene Epoch, when these areas last emerged from the sea. The first Weichselian ice expansion possibly reached the western part of Suupohja in the Early Weichselian Substage (MIS 5d?), but it did not expand further to the east. The second Weichselian glaciation of relatively short duration occupied the southern part of Finland in the later part of Middle Weichselian (MIS 3). Thus, the southern half of the country remained ice-free for the majority (~65–75%) of the Weichselian Stage. Instead, both humid temperate and periglacial conditions alternated. In the initial part of Middle Weichselian, this area was partly submerged, which indicates eastward expansion of the Scandinavian ice sheet(s), depressing the lithosphere. The exceptionally thick sediment cover, multiple lithofacies, relict landscape and preserved preglacially weathered bedrock are evidence of weak glacial erosion in the Suupohja area during the latest as well as earlier glaciations, making this area one of the key areas in Quaternary research.
Resumo:
Effective processes to fractionate the main compounds in biomass, such as wood, are a prerequisite for an effective biorefinery. Water is environmentally friendly and widely used in industry, which makes it a potential solvent also for forest biomass. At elevated temperatures over 100 °C, water can readily hydrolyse and dissolve hemicelluloses from biomass. In this work, birch sawdust was extracted using pressurized hot water (PHWE) flow-through systems. The hypothesis of the work was that it is possible to obtain polymeric, water-soluble hemicelluloses from birch sawdust using flow-through PHW extractions at both laboratory and large scale. Different extraction temperatures in the range 140–200 °C were evaluated to see the effect of temperature to the xylan yield. The yields and extracted hemicelluloses were analysed to obtain sugar ratios, the amount of acetyl groups, furfurals and the xylan yields. Higher extraction temperatures increased the xylan yield, but decreased the molar mass of the dissolved xylan. As the extraction temperature increased, more acetic acid was released from the hemicelluloses, thus further decreasing the pH of the extract. There were only trace amounts of furfurals present after the extractions, indicating that the treatment was mild enough not to degrade the sugars further. The sawdust extraction density was increased by packing more sawdust in the laboratory scale extraction vessel. The aim was to obtain extracts with higher concentration than in typical extraction densities. The extraction times and water flow rates were kept constant during these extractions. The higher sawdust packing degree decreased the water use in the extractions and the extracts had higher hemicellulose concentrations than extractions with lower sawdust degrees of packing. The molar masses of the hemicelluloses were similar in higher packing degrees and in the degrees of packing that were used in typical PHWE flow-through extractions. The structure of extracted sawdust was investigated using small angle-(SAXS) and wide angle (WAXS) x-ray scattering. The cell wall topography of birch sawdust and extracted sawdust was compared using x-ray tomography. The results showed that the structure of the cell walls of extracted birch sawdust was preserved but the cell walls were thinner after the extractions. Larger pores were opened inside the fibres and cellulose microfibrils were more tightly packed after the extraction. Acetate buffers were used to control the pH of the extracts during the extractions. The pH control prevented excessive xylan hydrolysis and increased the molar masses of the extracted xylans. The yields of buffered extractions were lower than for plain water extractions at 160–170 °C, but at 180 °C yields were similar to those from plain water and pH buffers. The pH can thus be controlled during extraction with acetate buffer to obtain xylan with higher molar mass than those obtainable using plain water. Birch sawdust was extracted both in the laboratory and pilot scale. The performance of the PHWE flow-through system was evaluated in the laboratory and the pilot scale using vessels with the same shape but different volumes, with the same relative water flow through the sawdust bed, and in the same extraction temperature. Pre-steaming improved the extraction efficiency and the water flow through the sawdust bed. The extracted birch sawdust and the extracted xylan were similar in both laboratory and pilot scale. The PHWE system was successfully scaled up by a factor of 6000 from the laboratory to pilot scale and extractions performed equally well in both scales. The results show that a flow-through system can be further scaled up and used to extract water-soluble xylans from birch sawdust. Extracted xylans can be concentrated, purified, and then used in e.g. films and barriers, or as building blocks for novel material applications.