5 resultados para Plates (structural components)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Recently, due to the increasing total construction and transportation cost and difficulties associated with handling massive structural components or assemblies, there has been increasing financial pressure to reduce structural weight. Furthermore, advances in material technology coupled with continuing advances in design tools and techniques have encouraged engineers to vary and combine materials, offering new opportunities to reduce the weight of mechanical structures. These new lower mass systems, however, are more susceptible to inherent imbalances, a weakness that can result in higher shock and harmonic resonances which leads to poor structural dynamic performances. The objective of this thesis is the modeling of layered sheet steel elements, to accurately predict dynamic performance. During the development of the layered sheet steel model, the numerical modeling approach, the Finite Element Analysis and the Experimental Modal Analysis are applied in building a modal model of the layered sheet steel elements. Furthermore, in view of getting a better understanding of the dynamic behavior of layered sheet steel, several binding methods have been studied to understand and demonstrate how a binding method affects the dynamic behavior of layered sheet steel elements when compared to single homogeneous steel plate. Based on the developed layered sheet steel model, the dynamic behavior of a lightweight wheel structure to be used as the structure for the stator of an outer rotor Direct-Drive Permanent Magnet Synchronous Generator designed for high-power wind turbines is studied.
Resumo:
Fatigue life assessment of weldedstructures is commonly based on the nominal stress method, but more flexible and accurate methods have been introduced. In general, the assessment accuracy is improved as more localized information about the weld is incorporated. The structural hot spot stress method includes the influence of macro geometric effects and structural discontinuities on the design stress but excludes the local features of the weld. In this thesis, the limitations of the structural hot spot stress method are discussed and a modified structural stress method with improved accuracy is developed and verified for selected welded details. The fatigue life of structures in the as-welded state consists mainly of crack growth from pre-existing cracks or defects. Crack growth rate depends on crack geometry and the stress state on the crack face plane. This means that the stress level and shape of the stress distribution in the assumed crack path governs thetotal fatigue life. In many structural details the stress distribution is similar and adequate fatigue life estimates can be obtained just by adjusting the stress level based on a single stress value, i.e., the structural hot spot stress. There are, however, cases for which the structural stress approach is less appropriate because the stress distribution differs significantly from the more common cases. Plate edge attachments and plates on elastic foundations are some examples of structures with this type of stress distribution. The importance of fillet weld size and weld load variation on the stress distribution is another central topic in this thesis. Structural hot spot stress determination is generally based on a procedure that involves extrapolation of plate surface stresses. Other possibilities for determining the structural hot spot stress is to extrapolate stresses through the thickness at the weld toe or to use Dong's method which includes through-thickness extrapolation at some distance from the weld toe. Both of these latter methods are less sensitive to the FE mesh used. Structural stress based on surface extrapolation is sensitive to the extrapolation points selected and to the FE mesh used near these points. Rules for proper meshing, however, are well defined and not difficult to apply. To improve the accuracy of the traditional structural hot spot stress, a multi-linear stress distribution is introduced. The magnitude of the weld toe stress after linearization is dependent on the weld size, weld load and plate thickness. Simple equations have been derived by comparing assessment results based on the local linear stress distribution and LEFM based calculations. The proposed method is called the modified structural stress method (MSHS) since the structural hot spot stress (SHS) value is corrected using information on weld size andweld load. The correction procedure is verified using fatigue test results found in the literature. Also, a test case was conducted comparing the proposed method with other local fatigue assessment methods.
Resumo:
Structural studies of proteins aim at elucidating the atomic details of molecular interactions in biological processes of living organisms. These studies are particularly important in understanding structure, function and evolution of proteins and in defining their roles in complex biological settings. Furthermore, structural studies can be used for the development of novel properties in biomolecules of environmental, industrial and medical importance. X-ray crystallography is an invaluable tool to obtain accurate and precise information about the structure of proteins at the atomic level. Glutathione transferases (GSTs) are amongst the most versatile enzymes in nature. They are able to catalyze a wide variety of conjugation reactions between glutathione (GSH) and non-polar components containing an electrophilic carbon, nitrogen or sulphur atom. Plant GSTs from the Tau class (a poorly characterized class) play an important role in the detoxification of xenobiotics and stress tolerance. Structural studies were performed on a Tau class fluorodifen-inducible glutathione transferase from Glycine max (GmGSTU4-4) complexed with GSH (2.7 Å) and a product analogue Nb-GSH (1.7 Å). The three-dimensional structure of the GmGSTU4-4-GSH complex revealed that GSH binds in different conformations in the two subunits of the dimer: in an ionized form in one subunit and a non-ionized form in the second subunit. Only the ionized form of the substrate may lead to the formation of a catalytically competent complex. Structural comparison between the GSH and Nb-GSH bound complexes revealed significant differences with respect to the hydrogen-bonding, electrostatic interaction pattern, the upper part of -helix H4 and the C-terminus of the enzyme. These differences indicate an intrasubunit modulation between the G-and Hsites suggesting an induced-fit mechanism of xenobiotic substrate binding. A novel binding site on the surface of the enzyme was also revealed. Bacterial type-II L-asparaginases are used in the treatment of haematopoietic diseases such as acute lymphoblastic leukaemia (ALL) and lymphomas due to their ability to catalyze the conversion of L-asparagine to L-aspartate and ammonia. Escherichia coli and Erwinia chrysanthemi asparaginases are employed for the treatment of ALL for over 30 years. However, serious side-effects affecting the liver and pancreas have been observed due to the intrinsic glutaminase activity of the administered enzymes. Structural studies on Helicobacter pylori L-asparaginase (HpA) were carried out in an effort to discover novel L-asparaginases with potential chemotherapeutic utility in ALL treatment. Detailed analysis of the active site geometry revealed structurally significant differences between HpA and other Lasparaginases that may be important for the biological activities of the enzyme and could be further exploited in protein engineering efforts.
Resumo:
Laser beam welding (LBW) is applicable for a wide range of industrial sectors and has a history of fifty years. However, it is considered an unusual method with applications typically limited to welding of thin sheet metal. With a new generation of high power lasers there has been a renewed interest in thick section LBW (also known as keyhole laser welding). There was a growing body of publications during 2001-2011 that indicates an increasing interest in laser welding for many industrial applications, and in last ten years, an increasing number of studies have examined the ways to increase the efficiency of the process. Expanding the thickness range and efficiency of LBW makes the process a possibility for industrial applications dealing with thick metal welding: shipbuilding, offshore structures, pipelines, power plants and other industries. The advantages provided by LBW, such as high process speed, high productivity, and low heat input, may revolutionize these industries and significantly reduce the process costs. The research to date has focused on either increasing the efficiency via optimizing process parameters, or on the process fundamentals, rather than on process and workpiece modifications. The argument of this thesis is that the efficiency of the laser beam process can be increased in a straightforward way in the workshop conditions. Throughout this dissertation, the term “efficiency” is used to refer to welding process efficiency, specifically, an increase in efficiency refers an increase in weld’s penetration depth without increasing laser power level or decreasing welding speed. These methods are: modifications of the workpiece – edge surface roughness and air gap between the joining plates; modification of the ambient conditions – local reduction of the pressure in the welding zone; modification of the welding process – preheating of the welding zone. Approaches to improve the efficiency are analyzed and compared both separately and combined. These experimentally proven methods confirm previous findings and contribute additional evidence which expand the opportunities for laser beam welding applications. The focus of this research was primarily on the effects of edge surface roughness preparation and pre-set air gap between the plates on weld quality and penetration depth. To date, there has been no reliable evidence that such modifications of the workpiece give a positive effect on the welding efficiency. Other methods were tested in combination with the two methods mentioned above. The most promising - combining with reduced pressure method - resulted in at least 100% increase in efficiency. The results of this thesis support the idea that joining those methods in one modified process will provide the modern engineering with a sufficient tool for many novel applications with potential benefits to a range of industries.
Resumo:
Thermal cutting methods, are commonly used in the manufacture of metal parts. Thermal cutting processes separate materials by using heat. The process can be done with or without a stream of cutting oxygen. Common processes are Oxygen, plasma and laser cutting. It depends on the application and material which cutting method is used. Numerically-controlled thermal cutting is a cost-effective way of prefabricating components. One design aim is to minimize the number of work steps in order to increase competitiveness. This has resulted in the holes and openings in plate parts manufactured today being made using thermal cutting methods. This is a problem from the fatigue life perspective because there is local detail in the as-welded state that causes a rise in stress in a local area of the plate. In a case where the static utilization of a net section is full used, the calculated linear local stresses and stress ranges are often over 2 times the material yield strength. The shakedown criteria are exceeded. Fatigue life assessment of flame-cut details is commonly based on the nominal stress method. For welded details, design standards and instructions provide more accurate and flexible methods, e.g. a hot-spot method, but these methods are not universally applied to flame cut edges. Some of the fatigue tests of flame cut edges in the laboratory indicated that fatigue life estimations based on the standard nominal stress method can give quite a conservative fatigue life estimate in cases where a high notch factor was present. This is an undesirable phenomenon and it limits the potential for minimizing structure size and total costs. A new calculation method is introduced to improve the accuracy of the theoretical fatigue life prediction method of a flame cut edge with a high stress concentration factor. Simple equations were derived by using laboratory fatigue test results, which are published in this work. The proposed method is called the modified FAT method (FATmod). The method takes into account the residual stress state, surface quality, material strength class and true stress ratio in the critical place.