12 resultados para Plant performance

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In nature, variation for example in herbivory, wind exposure, moisture and pollution impact often creates variation in physiological stress and plant productivity. This variation is seldom clear-cut, but rather results in clines of decreasing growth and productivity towards the high-stress end. These clines of unidirectionally changing stress are generally known as ‘stress gradients’. Through its effect on plant performance, stress has the capacity to fundamentally alter the ecological relationships between individuals, and through variation in survival and reproduction it also causes evolutionary change, i.e. local adaptations to stress and eventually speciation. In certain conditions local adaptations to environmental stress have been documented in a matter of just a few generations. In plant-plant interactions, intensities of both negative interactions (competition) and positive ones (facilitation) are expected to vary along stress gradients. The stress-gradient hypothesis (SGH) suggests that net facilitation will be strongest in conditions of high biotic and abiotic stress, while a more recent ‘humpback’ model predicts strongest net facilitation at intermediate levels of stress. Plant interactions on stress gradients, however, are affected by a multitude of confounding factors, making studies of facilitation-related theories challenging. Among these factors are plant ontogeny, spatial scale, and local adaptation to stress. The last of these has very rarely been included in facilitation studies, despite the potential co-occurrence of local adaptations and changes in net facilitation in stress gradients. Current theory would predict both competitive effects and facilitative responses to be weakest in populations locally adapted to withstand high abiotic stress. This thesis is based on six experiments, conducted both in greenhouses and in the field in Russia, Norway and Finland, with mountain birch (Betula pubescens subsp. czerepanovii) as the model species. The aims were to study potential local adaptations in multiple stress gradients (both natural and anthropogenic), changes in plant-plant interactions under conditions of varying stress (as predicted by SGH), potential mechanisms behind intraspecific facilitation, and factors confounding plant-plant facilitation, such as spatiotemporal, ontogenetic, and genetic differences. I found rapid evolutionary adaptations (occurring within a time-span of 60 to 70 years) towards heavy-metal resistance around two copper-nickel smelters, a phenomenon that has resulted in a trade-off of decreased performance in pristine conditions. Heavy-metal-adapted individuals had lowered nickel uptake, indicating a possible mechanism behind the detected resistance. Seedlings adapted to heavy-metal toxicity were not co-resistant to others forms of abiotic stress, but showed co-resistance to biotic stress by being consumed to a lesser extent by insect herbivores. Conversely, populations from conditions of high natural stress (wind, drought etc.) showed no local adaptations, despite much longer evolutionary time scales. Due to decreasing emissions, I was unable to test SGH in the pollution gradients. In natural stress gradients, however, plant performance was in accordance with SGH, with the strongest host-seedling facilitation found at the high-stress sites in two different stress gradients. Factors confounding this pattern included (1) plant size / ontogenetic status, with seedling-seedling interactions being competition dominated and host-seedling interactions potentially switching towards competition with seedling growth, and (2) spatial distance, with competition dominating at very short planting distances, and facilitation being strongest at a distance of circa ¼ benefactor height. I found no evidence for changes in facilitation with respect to the evolutionary histories of plant populations. Despite the support for SGH, it may be that the ‘humpback’ model is more relevant when the main stressor is resource-related, while what I studied were the effects of ‘non-resource’ stressors (i.e. heavy-metal pollution and wind). The results have potential practical applications: the utilisation of locally adapted seedlings and plant facilitation may increase the success of future restoration efforts in industrial barrens as well as in other wind-exposed sites. The findings also have implications with regard to the effects of global change in subarctic environments: the documented potential by mountain birch for rapid evolutionary change, together with the general lack of evolutionary ‘dead ends’, due to not (over)specialising to current natural conditions, increase the chances of this crucial forest-forming tree persisting even under the anticipated climate change.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Increasing amount of renewable energy source based electricity production has set high load control requirements for power grid balance markets. The essential grid balance between electricity consumption and generation is currently hard to achieve economically with new-generation solutions. Therefore conventional combustion power generation will be examined in this thesis as a solution to the foregoing issue. Circulating fluidized bed (CFB) technology is known to have sufficient scale to acts as a large grid balancing unit. Although the load change rate of the CFB unit is known to be moderately high, supplementary repowering solution will be evaluated in this thesis for load change maximization. The repowering heat duty is delivered to the CFB feed water preheating section by smaller gas turbine (GT) unit. Consequently, steam extraction preheating may be decreased and large amount of the gas turbine exhaust heat may be utilized in the CFB process to reach maximum plant electrical efficiency. Earlier study of the repowering has focused on the efficiency improvements and retrofitting to maximize plant electrical output. This study however presents the CFB load change improvement possibilities achieved with supplementary GT heat. The repowering study is prefaced with literature and theory review for both of the processes to maximize accuracy of the research. Both dynamic and steady-state simulations accomplished with APROS simulation tool will be used to evaluate repowering effects to the CFB unit operation. Eventually, a conceptual level analysis is completed to compare repowered plant performance to the state-of-the-art CFB performance. Based on the performed simulations, considerably good improvements to the CFB process parameters are achieved with repowering. Consequently, the results show possibilities to higher ramp rate values achieved with repowered CFB technology. This enables better plant suitability to the grid balance markets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Shallow coastal areas are dynamic habitats that are affected by a variety of abiotic and biotic factors. In addition to the natural environmental stress, estuarine and coastal seagrass ecosystems are exposed to effects of climate change and other anthropogenic impacts. In this thesis the effect of different abiotic (shading stress, salinity and temperature) and biotic stressors (presence of co-occurring species) and different levels and combinations of stressors on the performance and survival of eelgrass (Zostera marina) was assessed. To investigate the importance of scale for stress responses, varying levels of biological organization (genotype, life stage, population and plant community) were studied in field and aquarium experiments. Light limitation, decreased salinity and increased temperature affected eelgrass performance negatively in papers I, II and III, respectively. While co-occurring plant species had no notable effect on eelgrass in paper IV, the presence of eelgrass increased the biomass of Potamogeton perfoliatus. The findings in papers II and III confirmed that more extreme levels of salinity and temperature had stronger impacts on plant performance compared to intermediate levels, but intermediate levels also had more severe effects on plants when they were exposed to several stressors, as illustrated in paper II. Thus, multiple stressors had negative synergetic effects. The results in papers I, II and III indicate that future changes in light climate, salinity and temperature can have serious impacts on eelgrass performance and survival. Stress responses were found to vary among genotypes, life stages and populations in papers I, II and III, respectively, emphasizing the importance of study scale. The results demonstrate that while stress in general affects seagrass productivity negatively, the severity of effects can vary substantially depending on the studied scale or level of biological organization. Eelgrass genotypes can differ in their stress and recovery processes, as observed in paper I. In paper II, eelgrass seedlings were less prone to abiotic stress compared to adult plants, but stress also decreased their survival considerably. This indicates that recruitment and re-colonization through seeds might be threatened in the future. Variation among population responses observed in paper III indicates that long-term local adaptation under differing selection pressures has caused divergence in salinity tolerance between Baltic eelgrass populations. This variability in stress tolerance observed in papers I and III suggests that some eelgrass genotypes and populations have a better capacity to adapt to changes and survive in a changing environment. Multiple stressors and biological level-specific responses demonstrate the uncertainty in predicting eelgrass responses in a changing environment. As eelgrass populations may differ in their stress tolerance both within and across regions, conservation strategies at both local and regional scales are urgently needed in order to ensure the survival of these important ecosystems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Fescues consist of wild and cultivated grasses that have adapted to a wide range of environmental conditions. They are an excellent model species for evolutionary ecology studies that investigate symbiosis and polyploidization and their effects on plant performance. First, they are frequently infected with symbiotic endophytic fungi known to affect a plant’s ability to cope with biotic and abiotic environmental factors. Second, fescue species have been reported to have substantial intraspecific variation in their ploidy level and morphology. In my thesis, I examined large-scale generalizations for frequency of polyploidy and endophyte infections and their effects on plant morphology. As a model species, I selected red (Festuca rubra) and viviparous sheep’s (F. vivipara) fescues. They are closely related, but they differ in terms of distribution and endophyte infection frequency. I investigated the biogeographic pattern and population biology of 29 red and 12 viviparous sheep’s fescue populations across ≈300 latitudes in Europe (400-690 N). To examine plant ploidy levels, I implemented time- and cost-efficient plate-based high throughput flow cytometric analysis. This efficient procedure enabled me to analyze over 1000 red fescue individuals. I found three ploidy levels among them: overall 84 %, 9 % and 7 % of the red fescue plants were hexaploid, tetraploid and octoploid, respectively. However, all viviparous sheep’s fescue plants were tetraploid. Ploidy level of red fescue appeared to some extent follow gradients in latitude and primary production as suggested by previous studies, but these results could be explained better by taking the sampling design and local adaptation into account. Three Spanish populations were mostly tetraploids and one high elevation population in northernmost Finland (Halti) was octoploid, while most other populations (25 sites) were dominated by hexaploids. Endophyte infection frequencies of wild fescue populations varied from 0 to 81 % in red fescue populations and from 0 to 30 % in viviparous sheep’s fescue populations. No gradients with latitude or primary production of the sites were detected. As taxonomy of red fescues is somewhat unclear, I also studied morphology, ploidy variation and endophyte status of proposed subspecies of European red fescues. Contrary to previous literature, different ploidy levels occurred in the same subspecies. In addition to wild fescues, I also used two agronomically important cultivars of meadow and tall fescue (Schedonorus phoenix and S. pratensis). As grass-legume mixtures have an agronomic advantage over monocultures in meadows, I carried out a mixture/competition experiment with fescues and red clover to find that species composition, nutrient availability and endophyte status together determined the total biomass yield that was higher in mixtures compared to monocultures. The results of this thesis demonstrate the importance of local biotic and abiotic factors such as grazing gradients and habitat types, rather than suggested general global geographical or environmental factors on grass polyploidization or its association with symbiotic endophytic fungi. I conclude that variation in endophyte infection frequencies and ploidy levels of wild fescues support the geographic mosaic theory of coevolution. Historical incidents, e.g., glaciation and present local factors, rather than ploidy or endophyte status, determine fescue morphology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pysyäkseen kilpailukykyisenä vapautuneilla sähkömarkkinoilla on voimalaitoksen energiantuotantokustannusten oltava mahdollisimman matalia, tinkimättä kuitenkaan korkeasta käytettävyydestä. Polttoaineen energiasisällön mahdollisimman hyvä hyödyntäminen on ratkaisevan tärkeää voimalaitoksen kannattavuudelle. Polttoainekustannusten osuus on konvektiivisilla laitoksilla yleensä yli puolet koko elinjakson kustannuksista. Kun vielä päästörajat tiukkenevat koko ajan, korostuu polttoaineen korkea hyötykäyttö entisestään. Korkea energiantuotannon luotettavuus ja käytettävyys ovat myös elintärkeitä pyrittäessä kustannusten minimointiin. Tässä työssä on käyty läpi voimalaitoksen kustannuksiin vaikuttavia käsitteitä, kuten hyötysuhdetta, käytettävyyttä, polttoaineen hintoja, ylös- ja alasajoja ja tärkeimpiä häviöitä. Ajostrategiassa ja poikkeamien hallinnassa pyritään hyvään hyötysuhteeseen ja alhaisiin päästöihin joka käyttötilanteessa. Lisäksi on tarkasteltu tiettyjen suureiden, eli höyryn lämpötilan ja paineen, savukaasun hapen pitoisuuden, savukaasun loppulämpötilan, sekä lauhduttimen paineen poikkeamien vaikutusta ohjearvostaan energiantuotantokustannuksiin. Happi / hiilimonoksidi optimoinnissa on otettu huomioon myös pohjatuhkan palamattomat.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielman tavoitteena on määritellä projektikontrolloinnin ja - riskijohtamisen roolit ja toiminnot saksalaisissa kone- ja tehdassuunnitteluteollisuusyrityksissä. Tämä on kvalitatiivinen tutkielma, jossa käytetään voimakkaasti kuvailevia metodeita. Materiaali tutkimuksen empiiriseen osaan kerättiin kyselykaavakkeen avulla. Kyselykaavakkeiden tulokset käsiteltiin Microsoft Office Access- ohjelmalla ja analysoitiin Microsoft Office Excel- ohjelmalla ja Pivot table- työkalun avulla. Tutkimustulokset osoittavat, että asianmukaisessa projektikontrollointi- ja riskijohtamismetodien käytössä ja käyttötiheydessä esiintyy puutteita saksalaisissa kone- ja tehdassuunnitteluteollisuusyrityksissä. Tehostamalla ja keskittymällä enemmän projektikontrollointi- ja riskijohtamismetodeihin ja prosesseihin sekä projektien että yritysten suorituskyky paranisi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Anaerobic treatment as a first biological stage in wastewater treatment is nowadays a well-established technology in recycled paper processing mills using closed water circuits. Today further developed high-rate processes and especially high-tower reactors are also able to handle lower organic loads and become therefore feasible for deinking pulp plant effluents. The interest in the anaerobic method is based on a positive energy balance in form of biogas production and low biomass yield from the process. The anaerobic treatment method was researched and its suitability for the deinking pulp plant effluents was tested experimentally at Stora Enso Maxau mill. In the theory, the deinking pulp process is introduced and the effluents from the deinking process are characterized. The anaerobic treatment is brought up in depth in terms of its use for the deinking effluents, and different kind of reactor types are presented. In addition, other wastewater treatment methods are shortly introduced with the focus on tertiary treatment. Static biodegradability tests were carried out for the wastewaters both anaerobically and aerobically. Based on the results, the deinking effluents can be degraded anaerobically, and inhibition to the methanogenic bacteria was not noticed. In the aerobic static test a good performance of the existing wastewater treatment plant at Maxau mill was proved. Later on pilot trials with sequential anaerobic-aerobic treatment were carried out for the deinking effluents. The anaerobic reactor used was a so called internal circulation reactor. The results confirmed that the combination of the anaerobic treatment and the aerobic activated sludge process is a suitable method for deinking wastewaters with a COD reduction as good as with a two stage aerobic method. When combined with the outstanding quality of the produced biogas and the cost savings acquired from the lower sludge production, the anaerobic treatment was found to be an especially favorable treatment method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Torrefaction is one of the pretreatment technologies to enhance the fuel characteristics of biomass. The efficient and continuous operation of a torrefaction reactor, in the commercial scale, demands a secure biomass supply, in addition to adequate source of heat. Biorefinery plants or biomass-fuelled steam power plants have the potential to integrate with the torrefaction reactor to exchange heat and mass, using available infrastructure and energy sources. The technical feasibility of this integration is examined in this study. A new model for the torrefaction process is introduced and verified by the available experimental data. The torrefaction model is then integrated in different steam power plants to simulate possible mass and energy exchange between the reactor and the plants. The performance of the integrated plant is investigated for different configurations and the results are compared.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study focused on identifying various system boundaries and evaluating methods of estimating energy performance of biogas production. First, the output-input ratio method used for evaluating energy performance from the system boundaries was reviewed. Secondly, ways to assess the efficiency of biogas use and parasitic energy demand were investigated. Thirdly, an approach for comparing biogas production to other energy production methods was evaluated. Data from an existing biogas plant, located in Finland, was used for the evaluation of the methods. The results indicate that calculating and comparing the output-input ratios (Rpr1, Rpr2, Rut, Rpl and Rsy) can be used in evaluating the performance of biogas production system. In addition, the parasitic energy demand calculations (w) and the efficiency of utilizing produced biogas (η) provide detailed information on energy performance of the biogas plant. Furthermore, Rf and energy output in relation to total solid mass of feedstock (FO/TS) are useful in comparing biogas production with other energy recovery technologies. As a conclusion it is essential for the comparability of biogas plants that their energy performance would be calculated in a more consistent manner in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The greatest threat that the biodegradable waste causes on the environment is the methane produced in landfills by the decomposition of this waste. The Landfill Directive (1999/31/EC) aims to reduce the landfilling of biodegradable waste. In Finland, 31% of biodegradable municipal waste ended up into landfills in 2012. The pressure of reducing disposing into landfills is greatly increased by the forthcoming landfill ban on biodegradable waste in Finland. There is a need to discuss the need for increasing the utilization of biodegradable waste in regional renewable energy production to utilize the waste in a way that allows the best possibilities to reduce GHG emissions. The objectives of the thesis are: (1) to find important factors affecting renewable energy recovery possibilities from biodegradable waste, (2) to determine the main factors affecting the GHG balance of biogas production system and how to improve it and (3) to find ways to define energy performance of biogas production systems and what affects it. According to the thesis, the most important factors affecting the regional renewable energy possibilities from biodegradable waste are: the amount of available feedstock, properties of feedstock, selected utilization technologies, demand of energy and material products and the economic situation of utilizing the feedstocks. The biogas production by anaerobic digestion was seen as the main technology for utilizing biodegradable waste in agriculturally dense areas. The main reason for this is that manure was seen as the main feedstock, and it can be best utilized with anaerobic digestion, which can produce renewable energy while maintaining the spreading of nutrients on arable land. Biogas plants should be located close to the heat demand that would be enough to receive the produced heat also in the summer months and located close to the agricultural area where the digestate could be utilized. Another option for biogas use is to upgrade it to biomethane, which would require a location close to the natural gas grid. The most attractive masses for biogas production are municipal and industrial biodegradable waste because of gate fees the plant receives from them can provide over 80% of the income. On the other hand, directing gate fee masses for small-scale biogas plants could make dispersed biogas production more economical. In addition, the combustion of dry agricultural waste such as straw would provide a greater energy amount than utilizing them by anaerobic digestion. The complete energy performance assessment of biogas production system requires the use of more than one system boundary. These can then be used in calculating output–input ratios of biogas production, biogas plant, biogas utilization and biogas production system, which can be used to analyze different parts of the biogas production chain. At the moment, it is difficult to compare different biogas plants since there is a wide variation of definitions for energy performance of biogas production. A more consistent way of analyzing energy performance would allow comparing biogas plants with each other and other recovery systems and finding possible locations for further improvement. Both from the GHG emission balance and energy performance point of view, the energy consumption at the biogas plant was the most significant factor. Renewable energy use to fulfil the parasitic energy demand at the plant would be the most efficient way to reduce the GHG emissions at the plant. The GHG emission reductions could be increased by upgrading biogas to biomethane and displacing natural gas or petrol use in cars when compared to biogas CHP production. The emission reductions from displacing mineral fertilizers with digestate were seen less significant, and the greater N2O emissions from spreading digestate might surpass the emission reductions from displacing mineral fertilizers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This master’s thesis examines the effects of increased material recycling on different waste-to-energy concepts. With background study and a developed techno-economic computational method the feasibility of chosen scenarios with different combinations of mechanical treatment and waste firing technologies can be evaluated. The background study covers the waste scene of Finland, and potential market areas Poland and France. Calculated cases concentrate on municipal solid waste treatment in the Finnish operational environment. The chosen methodology to approach the objectives is techno-economic feasibility assessment. It combines calculation methods of literature and practical engineering to define the material and energy balances in chosen scenarios. The calculation results together with other operational and financial data can be concluded to net present values compared between the scenarios. For the comparison, four scenarios, most vital and alternative between each other, are established. The baseline scenario is grate firing of source separated mixed municipal solid waste. Second scenario is fluidized bed combustion of solid recovered fuel produced in mechanical treatment process with metal separation. Third scenario combines a biomaterial separation process to the solid recovered fuels preparation and in the last scenario plastics are separated in addition to the previous operations. The results indicated that the mechanical treatment scenarios still need to overcome some problems to become feasible. Problems are related to profitability, residue disposal and technical reliability. Many uncertainties are also related to the data gathered over waste characteristics, technical performance and markets. With legislative support and development of further processing technologies and markets of the recycled materials the scenarios with biomaterial and plastic separation may operate feasibly in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tannins, typically segregated into two major groups, the hydrolyzable tannins (HTs) and the proanthocyanidins (PAs), are plant polyphenolic secondary metabolites found throughout the plant kingdom. On one hand, tannins may cause harmful nutritional effects on herbivores, for example insects, and hence they work as plants’ defense against plant-eating animals. On the other hand, they may affect positively some herbivores, such as mammals, for example by their antioxidant, antimicrobial, anti-inflammatory or anticarcinogenic activities. This thesis focuses on understanding the bioactivity of plant tannins, their anthelmintic properties and the tools used for the qualitative and quantitative analysis of this endless source of structural diversity. The first part of the experimental work focused on the development of ultra-high performance liquid chromatography−tandem mass spectrometry (UHPLC-MS/MS) based methods for the rapid fingerprint analysis of bioactive polyphenols, especially tannins. In the second part of the experimental work the in vitro activity of isolated and purified HTs and their hydrolysis product, gallic acid, was tested against egg hatching and larval motility of two larval developmental stages, L1 and L2, of a common ruminant gastrointestinal parasite, Haemonchus contortus. The results indicated clear relationships between the HT structure and the anthelmintic activity. The activity of the studied compounds depended on many structural features, including size, functional groups present in the structure, and the structural rigidness. To further understand tannin bioactivity on a molecular level, the interaction between bovine serum albumin (BSA), and seven HTs and epigallocatechin gallate was examined. The objective was to define the effect of pH on the formation on tannin–protein complexes and to evaluate the stability of the formed complexes by gel electrophoresis and MALDI-TOF-MS. The results indicated that more basic pH values had a stabilizing effect on the tannin–protein complexes and that the tannin oxidative activity was directly linked with their tendency to form covalently stabilized complexes with BSA at increased pH.