1 resultado para Pixels

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supernova (SN) is an explosion of a star at the end of its lifetime. SNe are classified to two types, namely type I and II through the optical spectra. They have been categorised based on their explosion mechanism, to core collapse supernovae (CCSNe) and thermonuclear supernovae. The CCSNe group which includes types IIP, IIn, IIL, IIb, Ib, and Ic are produced when a massive star with initial mass more than 8 M⊙ explodes due to a collapse of its iron core. On the other hand, thermonuclear SNe originate from white dwarfs (WDs) made of carbon and oxygen, in a binary system. Infrared astronomy covers observations of astronomical objects in infrared radiation. The infrared sky is not completely dark and it is variable. Observations of SNe in the infrared give different information than optical observations. Data reduction is required to correct raw data from for example unusable pixels and sky background. In this project, the NOTCam package in the IRAF was used for the data reduction. For measuring magnitudes of SNe, the aperture photometry method with the Gaia program was used. In this Master’s thesis, near-infrared (NIR) observations of three supernovae of type IIn (namely LSQ13zm, SN 2009ip and SN2011jb), one type IIb (SN2012ey), in addition to one type Ic (SN2012ej) and type IIP (SN 2013gd) are studied with emphasis on luminosity and colour evolution. All observations were done with the Nordic Optical Telescope (NOT). Here, we used the classification by Mattila & Meikle (2001) [76], where the SNe are differentiated by the infrared light curves into two groups, namely ’ordinary’ and ’slowly declining’. The light curves and colour evolution of these supernovae were obtained in J, H and Ks bands. In this study, our data, combined with other observations, provide evidence to categorize LSQ13zm, SN 2012ej and SN 2012ey as being part of the ordinary type. We found interesting NIR behaviour of SN 2011jb, which lead it to be classified as a slowly declining type.