4 resultados para Piecewise Polynomial Approximation

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Selostus: Sian kasvuominaisuuksien perinnölliset tunnusluvut arvioituna kolmannen asteen polynomifunktion avulla

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theultimate goal of any research in the mechanism/kinematic/design area may be called predictive design, ie the optimisation of mechanism proportions in the design stage without requiring extensive life and wear testing. This is an ambitious goal and can be realised through development and refinement of numerical (computational) technology in order to facilitate the design analysis and optimisation of complex mechanisms, mechanical components and systems. As a part of the systematic design methodology this thesis concentrates on kinematic synthesis (kinematic design and analysis) methods in the mechanism synthesis process. The main task of kinematic design is to find all possible solutions in the form of structural parameters to accomplish the desired requirements of motion. Main formulations of kinematic design can be broadly divided to exact synthesis and approximate synthesis formulations. The exact synthesis formulation is based in solving n linear or nonlinear equations in n variables and the solutions for the problem areget by adopting closed form classical or modern algebraic solution methods or using numerical solution methods based on the polynomial continuation or homotopy. The approximate synthesis formulations is based on minimising the approximation error by direct optimisation The main drawbacks of exact synthesis formulationare: (ia) limitations of number of design specifications and (iia) failure in handling design constraints- especially inequality constraints. The main drawbacks of approximate synthesis formulations are: (ib) it is difficult to choose a proper initial linkage and (iib) it is hard to find more than one solution. Recentformulations in solving the approximate synthesis problem adopts polynomial continuation providing several solutions, but it can not handle inequality const-raints. Based on the practical design needs the mixed exact-approximate position synthesis with two exact and an unlimited number of approximate positions has also been developed. The solutions space is presented as a ground pivot map but thepole between the exact positions cannot be selected as a ground pivot. In this thesis the exact synthesis problem of planar mechanism is solved by generating all possible solutions for the optimisation process ¿ including solutions in positive dimensional solution sets - within inequality constraints of structural parameters. Through the literature research it is first shown that the algebraic and numerical solution methods ¿ used in the research area of computational kinematics ¿ are capable of solving non-parametric algebraic systems of n equations inn variables and cannot handle the singularities associated with positive-dimensional solution sets. In this thesis the problem of positive-dimensional solutionsets is solved adopting the main principles from mathematical research area of algebraic geometry in solving parametric ( in the mathematical sense that all parameter values are considered ¿ including the degenerate cases ¿ for which the system is solvable ) algebraic systems of n equations and at least n+1 variables.Adopting the developed solution method in solving the dyadic equations in direct polynomial form in two- to three-precision-points it has been algebraically proved and numerically demonstrated that the map of the ground pivots is ambiguousand that the singularities associated with positive-dimensional solution sets can be solved. The positive-dimensional solution sets associated with the poles might contain physically meaningful solutions in the form of optimal defectfree mechanisms. Traditionally the mechanism optimisation of hydraulically driven boommechanisms is done at early state of the design process. This will result in optimal component design rather than optimal system level design. Modern mechanismoptimisation at system level demands integration of kinematic design methods with mechanical system simulation techniques. In this thesis a new kinematic design method for hydraulically driven boom mechanism is developed and integrated in mechanical system simulation techniques. The developed kinematic design method is based on the combinations of two-precision-point formulation and on optimisation ( with mathematical programming techniques or adopting optimisation methods based on probability and statistics ) of substructures using calculated criteria from the system level response of multidegree-of-freedom mechanisms. Eg. by adopting the mixed exact-approximate position synthesis in direct optimisation (using mathematical programming techniques) with two exact positions and an unlimitednumber of approximate positions the drawbacks of (ia)-(iib) has been cancelled.The design principles of the developed method are based on the design-tree -approach of the mechanical systems and the design method ¿ in principle ¿ is capable of capturing the interrelationship between kinematic and dynamic synthesis simultaneously when the developed kinematic design method is integrated with the mechanical system simulation techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis studies properties of transforms based on parabolic scaling, like Curvelet-, Contourlet-, Shearlet- and Hart-Smith-transform. Essentially, two di erent questions are considered: How these transforms can characterize H older regularity and how non-linear approximation of a piecewise smooth function converges. In study of Hölder regularities, several theorems that relate regularity of a function f : R2 → R to decay properties of its transform are presented. Of particular interest is the case where a function has lower regularity along some line segment than elsewhere. Theorems that give estimates for direction and location of this line, and regularity of the function are presented. Numerical demonstrations suggest also that similar theorems would hold for more general shape of segment of low regularity. Theorems related to uniform and pointwise Hölder regularity are presented as well. Although none of the theorems presented give full characterization of regularity, the su cient and necessary conditions are very similar. Another theme of the thesis is the study of convergence of non-linear M ─term approximation of functions that have discontinuous on some curves and otherwise are smooth. With particular smoothness assumptions, it is well known that squared L2 approximation error is O(M-2(logM)3) for curvelet, shearlet or contourlet bases. Here it is shown that assuming higher smoothness properties, the log-factor can be removed, even if the function still is discontinuous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stochastic approximation methods for stochastic optimization are considered. Reviewed the main methods of stochastic approximation: stochastic quasi-gradient algorithm, Kiefer-Wolfowitz algorithm and adaptive rules for them, simultaneous perturbation stochastic approximation (SPSA) algorithm. Suggested the model and the solution of the retailer's profit optimization problem and considered an application of the SQG-algorithm for the optimization problems with objective functions given in the form of ordinary differential equation.