6 resultados para Physical vapor deposition (PVD)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Hiilinanoputki on vasta 90-luvun alussa löydetty uusi hiilestä koostuva materiaali, jonka erinomaiset mekaaniset ja fysikaaliset ominaisuudet tarjoavat niiden käytölle useita mahdollisia sovelluskohteita. Teknologian puute ja valmistusmenetelmien korkeat kustannukset ovat kuitenkin estäneet tehokkaasti niiden käytön nykyisten materiaalien ja puolijohteiden korvaajana. Tämän työn tarkoituksena on esitellä yleisimmät menetelmät hiilinanoputkien syntetisoimiseksi sekä suunnitella laite yksiseinäisten hiilinanoputkien tuottamiseen kemiallisen höyrydeposition avulla. Lisäksi tavoitteena on luoda laitteelle modulaarinen rakenne, jolloin sen eri osien korvaaminen rajapintojen sallimissa rajoissa on helppoa. Reaktorin mekaanisen suunnittelun ja komponenttien valinnan lisäksi työssä käsitellään laitteen kaasu- ja lämpövirtauksia, prosessissa tärkeiden katalyyttipartikkelien tuotantoa sekä laitteessa tarvittavien jäähdytysjärjestelmien mitoituksia. Tuloksena syntyi helposti toteutettava suunnitelma yksiseinäisiä nanoputkia tuottavan reaktorin valmistamiseksi. Työ jatkuu laitteen rakentamisella, testaamisella sekä jatkokehittelyllä.
Resumo:
Ceramics are widely used in industrial applications due to their advantageous thermal and mechanical stability. Corrosion of ceramics is a great problem resulting in significant costs. Coating is one method of reducing adversities of corrosion. There are several different thin film deposition processes available such as sol-gel, Physical and Chemical Vapour Deposition (PVD and CVD). One of the CVD processes, called Atomic Layer Deposition (ALD) stands out for its excellent controllability, accuracy and wide process capability. The most commonly mentioned disadvantage of this method is its slowness which is partly compensated by its capability of processing large areas at once. Several factors affect the ALD process. Such factors include temperature, the grade of precursors, pulse-purge times and flux of precursors as well as the substrate used. Wrongly chosen process factors may cause loss of self-limiting growth and thus, non-uniformities in the deposited film. Porous substrates require longer pulse times than flat surfaces. The goal of this thesis was to examine the effects of ALD films on surface properties of a porous ceramic material. The analyses applied were for permeability, bubble point pressure and isoelectric point. In addition, effects of the films on corrosion resistance of the substrate in aqueous environment were investigated. After being exposured to different corrosive media the ceramics and liquid samples collected were analysed both mechanically and chemically. Visual and contentual differences between the exposed and coated ceramics versus the untreated and uncoated ones were analysed by scanning electron microscope. Two ALD film materials, dialuminium trioxide and titanium dioxide were deposited on the ceramic substrate using different pulse times. The results of both film materials indicated that surface properties of the ceramic material can be modified to some extent by the ALD method. The effect of the titanium oxide film on the corrosion resistance of the ceramic samples was observed to be fairly small regardless of the pulse time.
Resumo:
In this work GaN and AlGaN layers were grown by metal-organic chemical vapor deposition (MOCVD) on sapphire substrates. The research was carried out at Micro and Nanoscience Laboratory of Helsinki University of Technology. The objective of this thesis is the study of MOCVD technique for the growth of GaN and AlGaN films and optimization of growth parameters in purpose to improve crystal quality of the films. The widely used two-step and the new multistep methods have been used for GaN, AlGaN MOCVD growth on c-plane sapphire. Properties of the GaN and AlGaN layers were studied using in-situ reflectance monitoring during MOCVD growth, atomic force microscopy and x-ray diffraction. Compared to the two step method, the multistep method has produced even better qualities of the GaN and AlGaN layers and significant reduction of threading dislocation density.
Resumo:
In this thesis, the contact resistance of graphene devices was investigated because high contact resistance is detrimental to the performance of graphene field-effect transistors (GFET). Method for increasing so-called edge-contact area was applied in device fabrication process, as few nanometers thick Ni layer was used as a catalytic etchant during the annealing process. Finally, Ni was also used as a metal for contact. GFETs were fabricated using electron beam lithography using graphene fabricated by chemical vapor deposition (CVD). Critical part of the fabrication process was to preserve the high quality of the graphene channel while etching the graphene at contact areas with Ni during the annealing. This was achieved by optimizing the combination of temperature and gas flows. The structural properties of graphene were studied using scanning electron microscopy, scanning confocal μ-Raman spectroscopy and optical microscopy. Evaluation of electric transport properties including contact resistance was carried out by transmission line method and four-probe method. The lowest contact resistance found was about at 350 Ωμm. In addition, different methods to transfer CVD graphene synthesized on copper were studied. Typical method using PMMA as a supporting layer leaves some residues after its removal, thus effecting on the performance of a graphene devices. In a metal assisted transfer method, metal is used as an interfacial layer between PMMA and graphene. This allows more effective removal of PMMA. However, Raman spectra of graphene transferred by metal assisted method showed somewhat lower quality than the PMMA assisted method
Resumo:
Surface chemistry is of great importance in plant biomass engineering and applications. The surface chemical composition of biomass which includes lignin, carbohydrates and extractives influences its interactions with chemical agents, such as pulp processing/papermaking chemicals, or enzymes for different purposes. In this thesis, the changes in the surface chemical composition of lignocellulosic biomass after physical modification for the improvement of resulting paper properties and chemical treatment for the enhancement of enzymatic hydrolysis were investigated. Low consistency (LC) refining was used as physical treatment of bleached softwood and hardwood pulp samples, and the surface chemistry of refined samples was investigated. The refined pulp was analysed as whole pulp while the fines-free fibre samples were characterized separately. The fines produced in LCrefining contributed to an enlarged surface specific area as well as the change of surface coverage by lignin and extractives, as investigated by X-ray photoelectron spectroscopy (XPS). The surface coverage by lignin of the whole pulp decreased after refining while the surface coverage by extractives increased both for pine and eucalyptus. In the case of pine, the removal of fines resulted in reduction of the surface coverage by extractives, while the surface coverage by lignin increased on fibre sample (without fines). In the case of eucalyptus, the surface coverage by lignin of fibre samples decreased after the removal of fines. In addition, the surface distribution of carbohydrates, lignin and extractives of pine and eucalyptus samples was determined by Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS). LC-refining increased the amounts of pentose, hexose and extractives on the surface of pine samples. ToF-SIMS also gave clear evidence about xylan deposition and reduction of surface lignin distribution on the fibre of eucalyptus. However, the changes in the surface chemical composition during the physical treatment has led to an increase in the adsorption of fluorescent whitening agents (FWAs) on fibres due to a combination of electro-static forces, specific surface area of fibres and hydrophobic interactions. Various physicochemical pretreatments were conducted on wood and non-wood biomass for enhancing enzymatic hydrolysis of polysaccharides, and the surface chemistry of the pretreated and enzymatically hydrolysed samples was investigated by field emission scanning electron microscopy (FE-SEM), XPS and ToF-SIMS. A hydrotrope was used as a relatively novel pretreatment technology both in the case of wood and non-wood biomass. For comparison, ionic liquid and hydrothermal pretreatments were applied on softwood and hardwood as well. Thus, XPS analysis showed that the surface lignin was more efficiently removed by hydrotropic pretreatment compared to ionic liquid or hydrothermal pretreatments. SEM analysis also found that already at room temperature the ionic liquid pretreatments were more effective in swelling the fibres compared with hydrotropic pretreatment at elevated temperatures. The enzymatic hydrolysis yield of hardwood was enhanced due to the decrease in surface coverage of lignin, which was induced by hydrotropic treatment. However, hydrotropic pretreatment was not appropriate for softwood because of the predominance of guaiacyl lignin structure in this material. In addition, the reduction of surface lignin and xylan during pretreatment and subsequent increase in cellulose hydrolysis by enzyme could be observed from ToF-SIMS results. The characterisation of the non-wood biomass (e.g. sugarcane bagasse and common reed) treated by hydrotropic method, alkaline and alkaline hydrogen peroxide pretreatments were carried out by XPS and ToF-SIMS. According to the results, the action for the removal of the surface lignin of non-wood biomass by hydrotropic pretreatment was more significant compared to alkaline and alkaline hydrogen peroxide pretreatments, although a higher total amount of lignin could be removed by alkaline and alkaline hydrogen peroxide pretreatment. Furthermore, xylan could be remarkably more efficiently removed by hydrotropic method. Therefore, the glucan yield achieved from hydrotropic treated sample was higher than that from samples treated with alkaline or alkaline hydrogen peroxide. Through the use of ToF-SIMS, the distribution and localization of lignin and carbohydrates on the surface of ignocelluloses during pretreatment and enzymatic hydrolysis could be detected, and xylan degradation during enzymatic hydrolysis could also be assessed. Thus, based on the results from XPS and ToF-SIMS, the mechanism of the hydrotropic pretreatment in improving the accessibility of enzymes to fibre and further ameliorating of the enzymatic saccharification could be better elucidated.
Resumo:
During the expansion of steam in turbine, the steam crosses the saturation line and hence subsequent turbine stages run under wet condition. The stages under wet condition run with low efficiency as compared to stages running with supersaturated steam and the life of the last stage cascade is reduced due to erosion. After the steam crosses the saturation line it does not condense immediately but instead it becomes supersaturated which is a meta-stable state and reversion of equilibrium results in the formation of large number of small droplets in the range of 0.05 - 1 μm. Although these droplets are small enough to follow the stream lines of vapor however some of the fog droplets are deposited on the blade surface. After deposition they coagulate into films and rivulets which are then drawn towards the trailing edge of the blade due to viscous drag of the steam. These large droplets in the range of radius 100 μm are accelerated by steam until they impact on the next blade row causing erosion. The two phenomenon responsible for deposition are inertial impaction and turbulent-diffusion. This work shall discuss the deposition mechanism in steam turbine in detail and numerically model and validate with practical data.