29 resultados para Phase-Locked Loop, Doppler tracking, Digital Signal Processing

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poster at Open Repositories 2014, Helsinki, Finland, June 9-13, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Problems of the designing active magnet bearingcontrol are developed. The estimation controller are designed and applied to a rigid rotor. The mathematical model of the active magnet bearing controller is developed. This mathematical model is realized on a DSP. The results of this realization are analyzed. The conclusions about the digital signal processing are made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virtalähdejärjestelmä koostuu itsenäisesti toimivista virtalähdeyksiköistä. Virtalähdeyksiköt ovat rinnankytketty syöttämään virtaa kuormaan. Tämä diplomityö käsittelee virtalähdeyksiköiden ohjaamiseen liittyviä ongelmia ja ratkaisuja. Työssä suunnitellaan virtalähdejärjestelmän ohjauselektroniikkaa sekä mikrokontrollerin ohjelmakoodia. Lisäksi kehitetään ratkaisuja virtalähteen hallintaan ja automaattiseen ohjaukseen. Huomiota kiinnitetään vikasietoisuuteen ja käyttäjäystävällisyyteen.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Teollusuussovelluksissa vaaditaan nykyisin yhä useammin reaaliaikaista tiedon käsittelyä. Luotettavuus on yksi tärkeimmistä reaaliaikaiseen tiedonkäsittelyyn kykenevän järjestelmän ominaisuuksista. Sen saavuttamiseksi on sekä laitteisto, että ohjelmisto testattava. Tämän työn päätavoitteena on laitteiston testaaminen ja laitteiston testattavuus, koska luotettava laitteistoalusta on perusta tulevaisuuden reaaliaikajärjestelmille. Diplomityössä esitetään digitaaliseen signaalinkäsittelyyn soveltuvan prosessorikortin suunnittelu. Prosessorikortti on tarkoitettu sähkökoneiden ennakoivaa kunnonvalvontaa varten. Uusimmat DFT (Desing for Testability) menetelmät esitellään ja niitä sovelletaan prosessorikortin sunnittelussa yhdessä vanhempien menetelmien kanssa. Kokemukset ja huomiot menetelmien soveltuvuudesta raportoidaan työn lopussa. Työn tavoitteena on kehittää osakomponentti web -pohjaiseen valvontajärjestelmään, jota on kehitetty Sähkötekniikan osastolla Lappeenrannan teknillisellä korkeakoululla.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for high performance, high precision, and energy saving in rotating machinery demands an alternative solution to traditional bearings. Because of the contactless operation principle, the rotating machines employing active magnetic bearings (AMBs) provide many advantages over the traditional ones. The advantages such as contamination-free operation, low maintenance costs, high rotational speeds, low parasitic losses, programmable stiffness and damping, and vibration insulation come at expense of high cost, and complex technical solution. All these properties make the use of AMBs appropriate primarily for specific and highly demanding applications. High performance and high precision control requires model-based control methods and accurate models of the flexible rotor. In turn, complex models lead to high-order controllers and feature considerable computational burden. Fortunately, in the last few years the advancements in signal processing devices provide new perspective on the real-time control of AMBs. The design and the real-time digital implementation of the high-order LQ controllers, which focus on fast execution times, are the subjects of this work. In particular, the control design and implementation in the field programmable gate array (FPGA) circuits are investigated. The optimal design is guided by the physical constraints of the system for selecting the optimal weighting matrices. The plant model is complemented by augmenting appropriate disturbance models. The compensation of the force-field nonlinearities is proposed for decreasing the uncertainty of the actuator. A disturbance-observer-based unbalance compensation for canceling the magnetic force vibrations or vibrations in the measured positions is presented. The theoretical studies are verified by the practical experiments utilizing a custom-built laboratory test rig. The test rig uses a prototyping control platform developed in the scope of this work. To sum up, the work makes a step in the direction of an embedded single-chip FPGA-based controller of AMBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Työssä tarkastellaan kolmen eri valmistajan signaaliprosessoriperheitä. Työn tavoitteena on tutkia prosessoreiden teknistä soveltuvuutta suunnitteilla olevaan taajuusmuuttajatuoteperheeseen. Työn alkuosassa käydään taajuusmuuttajan rakenne läpi ja selostetaan oikosulkumoottorin yleisimmät ohjausmenetelmät. Työssä selvitetään myös signaaliprosessorin ja integroitujen oheispiirien toimintaa. Työn painopiste prosessoreiden teknisten ominaisuuksien vertailussa. Työssä on vertailtu muun muassa prosessoreiden sisäistä rakennetta, käskykantojen ominaisuuksia, keskeytysten palveluun kuluvaa aikaa ja oheispiirien ominaisuuksia. Oheispiirien, erityisesti analogiadigitaalimuuntimen halutunlainen toiminta on moottorinohjausohjelmiston kannalta tärkeää. Työhön sisällytetyt prosessoriperheet on pisteytetty tarkasteltujen ominaisuuksien osalta. Vertailun tuloksena on esitetty haettuun tarkoitukseen teknisesti soveltuvin prosessoriperhe ja prosessorityyppi. Työssä ei kuitenkaan voida antaa yleistä paremmuusjärjestystä tutkituille prosessoreille.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Universal Converter (UNICON) –projektin osana suunniteltiin sähkömoottorikäyttöjen ohjaukseen ja mittaukseen soveltuva digitaaliseen signaaliprosessoriin (DSP) pohjautuva sulautettu järjestelmä. Riittävän laskentatehon varmistamiseksi päädyttiin käyttämään moniprosessorijärjestelmää. Prosessorijärjestelmässä käytettävää DSP-piiriä valittaessa valintaperusteina olivat piirien tarjoama prosessointiteho ja moniprosessorituki. Analog Devices:n SHARC-sarjan DSP-piirit täyttivät parhaiten asetetut vaatimukset: Ne tarjoavat tehokkaan käskykannan lisäksi suuren sisäisen muistin ja sisäänrakennetun moniprosessorituen. Järjestelmän mittalaiteluonteisuudesta johtuen keskeinen suunnitteluparametri oli luoda nopeat tiedonsiirtoyhteydet mittausantureilta DSP-järjestelmään. Tämä toteutettiin käyttäen ohjelmointavia FPGA-logiikkapiirejä digitaalimuotoisen mittausdatan vastaanotossa ja esikäsittelyssä. Tiedonsiirtoyhteys PC-tietokoneelle toteutettiin käyttäen erityistä liityntäkorttia DSP-järjestelmän ja PC-tietokoneen välillä. Liityntäkortin päätehtävänä on puskuroida siirrettävä data. Järjestelyllä estetään PC-tietokoneen vaikutus DSP-järjestelmän toimintaan, jotta kyetään takaamaan järjestelmän reaaliaikainen toiminta kaikissa olosuhteissa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mottling is one of the key defects in offset-printing. Mottling can be defined as unwanted unevenness of print. In this work, diameter of a mottle spot is defined between 0.5-10.0 mm. There are several types of mottling, but the reason behind the problem is still not fully understood. Several commercial machine vision products for the evaluation of print unevenness have been presented. Two of these methods used in these products have been implemented in this thesis. The one is the cluster method and the other is the band-pass method. The properties of human vision system have been taken into account in the implementation of these two methods. An index produced by the cluster method is a weighted sum of the number of found spots, and an index produced by band-pass method is a weighted sum of coefficients of variations of gray-levels for each spatial band. Both methods produce larger indices for visually poor samples, so they can discern good samples from the poor ones. The difference between the indices for good and poor samples is slightly larger produced by the cluster method. 11 However, without the samples evaluated by human experts, the goodness of these results is still questionable. This comparison will be left to the next phase of the project.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industry's growing need for higher productivity is placing new demands on mechanisms connected with electrical motors, because these can easily lead to vibration problems due to fast dynamics. Furthermore, the nonlinear effects caused by a motor frequently reduce servo stability, which diminishes the controller's ability to predict and maintain speed. Hence, the flexibility of a mechanism and its control has become an important area of research. The basic approach in control system engineering is to assume that the mechanism connected to a motor is rigid, so that vibrations in the tool mechanism, reel, gripper or any apparatus connected to the motor are not taken into account. This might reduce the ability of the machine system to carry out its assignment and shorten the lifetime of the equipment. Nonetheless, it is usually more important to know how the mechanism, or in other words the load on the motor, behaves. A nonlinear load control method for a permanent magnet linear synchronous motor is developed and implemented in the thesis. The purpose of the controller is to track a flexible load to the desired velocity reference as fast as possible and without awkward oscillations. The control method is based on an adaptive backstepping algorithm with its stability ensured by the Lyapunov stability theorem. As a reference controller for the backstepping method, a hybrid neural controller is introduced in which the linear motor itself is controlled by a conventional PI velocity controller and the vibration of the associated flexible mechanism is suppressed from an outer control loop using a compensation signal from a multilayer perceptron network. To avoid the local minimum problem entailed in neural networks, the initial weights are searched for offline by means of a differential evolution algorithm. The states of a mechanical system for controllers are estimated using the Kalman filter. The theoretical results obtained from the control design are validated with the lumped mass model for a mechanism. Generalization of the mechanism allows the methods derived here to be widely implemented in machine automation. The control algorithms are first designed in a specially introduced nonlinear simulation model and then implemented in the physical linear motor using a DSP (Digital Signal Processor) application. The measurements prove that both controllers are capable of suppressing vibration, but that the backstepping method is superior to others due to its accuracy of response and stability properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A linear prediction procedure is one of the approved numerical methods of signal processing. In the field of optical spectroscopy it is used mainly for extrapolation known parts of an optical signal in order to obtain a longer one or deduce missing signal samples. The first is needed particularly when narrowing spectral lines for the purpose of spectral information extraction. In the present paper the coherent anti-Stokes Raman scattering (CARS) spectra were under investigation. The spectra were significantly distorted by the presence of nonlinear nonresonant background. In addition, line shapes were far from Gaussian/Lorentz profiles. To overcome these disadvantages the maximum entropy method (MEM) for phase spectrum retrieval was used. The obtained broad MEM spectra were further underwent the linear prediction analysis in order to be narrowed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the shift towards many-core computer architectures, dataflow programming has been proposed as one potential solution for producing software that scales to a varying number of processor cores. Programming for parallel architectures is considered difficult as the current popular programming languages are inherently sequential and introducing parallelism is typically up to the programmer. Dataflow, however, is inherently parallel, describing an application as a directed graph, where nodes represent calculations and edges represent a data dependency in form of a queue. These queues are the only allowed communication between the nodes, making the dependencies between the nodes explicit and thereby also the parallelism. Once a node have the su cient inputs available, the node can, independently of any other node, perform calculations, consume inputs, and produce outputs. Data ow models have existed for several decades and have become popular for describing signal processing applications as the graph representation is a very natural representation within this eld. Digital lters are typically described with boxes and arrows also in textbooks. Data ow is also becoming more interesting in other domains, and in principle, any application working on an information stream ts the dataflow paradigm. Such applications are, among others, network protocols, cryptography, and multimedia applications. As an example, the MPEG group standardized a dataflow language called RVC-CAL to be use within reconfigurable video coding. Describing a video coder as a data ow network instead of with conventional programming languages, makes the coder more readable as it describes how the video dataflows through the different coding tools. While dataflow provides an intuitive representation for many applications, it also introduces some new problems that need to be solved in order for data ow to be more widely used. The explicit parallelism of a dataflow program is descriptive and enables an improved utilization of available processing units, however, the independent nodes also implies that some kind of scheduling is required. The need for efficient scheduling becomes even more evident when the number of nodes is larger than the number of processing units and several nodes are running concurrently on one processor core. There exist several data ow models of computation, with different trade-offs between expressiveness and analyzability. These vary from rather restricted but statically schedulable, with minimal scheduling overhead, to dynamic where each ring requires a ring rule to evaluated. The model used in this work, namely RVC-CAL, is a very expressive language, and in the general case it requires dynamic scheduling, however, the strong encapsulation of dataflow nodes enables analysis and the scheduling overhead can be reduced by using quasi-static, or piecewise static, scheduling techniques. The scheduling problem is concerned with nding the few scheduling decisions that must be run-time, while most decisions are pre-calculated. The result is then an, as small as possible, set of static schedules that are dynamically scheduled. To identify these dynamic decisions and to find the concrete schedules, this thesis shows how quasi-static scheduling can be represented as a model checking problem. This involves identifying the relevant information to generate a minimal but complete model to be used for model checking. The model must describe everything that may affect scheduling of the application while omitting everything else in order to avoid state space explosion. This kind of simplification is necessary to make the state space analysis feasible. For the model checker to nd the actual schedules, a set of scheduling strategies are de ned which are able to produce quasi-static schedulers for a wide range of applications. The results of this work show that actor composition with quasi-static scheduling can be used to transform data ow programs to t many different computer architecture with different type and number of cores. This in turn, enables dataflow to provide a more platform independent representation as one application can be fitted to a specific processor architecture without changing the actual program representation. Instead, the program representation is in the context of design space exploration optimized by the development tools to fit the target platform. This work focuses on representing the dataflow scheduling problem as a model checking problem and is implemented as part of a compiler infrastructure. The thesis also presents experimental results as evidence of the usefulness of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the state and parameter estimation in state space models. The estimation of states and parameters is an important task when mathematical modeling is applied to many different application areas such as the global positioning systems, target tracking, navigation, brain imaging, spread of infectious diseases, biological processes, telecommunications, audio signal processing, stochastic optimal control, machine learning, and physical systems. In Bayesian settings, the estimation of states or parameters amounts to computation of the posterior probability density function. Except for a very restricted number of models, it is impossible to compute this density function in a closed form. Hence, we need approximation methods. A state estimation problem involves estimating the states (latent variables) that are not directly observed in the output of the system. In this thesis, we use the Kalman filter, extended Kalman filter, Gauss–Hermite filters, and particle filters to estimate the states based on available measurements. Among these filters, particle filters are numerical methods for approximating the filtering distributions of non-linear non-Gaussian state space models via Monte Carlo. The performance of a particle filter heavily depends on the chosen importance distribution. For instance, inappropriate choice of the importance distribution can lead to the failure of convergence of the particle filter algorithm. In this thesis, we analyze the theoretical Lᵖ particle filter convergence with general importance distributions, where p ≥2 is an integer. A parameter estimation problem is considered with inferring the model parameters from measurements. For high-dimensional complex models, estimation of parameters can be done by Markov chain Monte Carlo (MCMC) methods. In its operation, the MCMC method requires the unnormalized posterior distribution of the parameters and a proposal distribution. In this thesis, we show how the posterior density function of the parameters of a state space model can be computed by filtering based methods, where the states are integrated out. This type of computation is then applied to estimate parameters of stochastic differential equations. Furthermore, we compute the partial derivatives of the log-posterior density function and use the hybrid Monte Carlo and scaled conjugate gradient methods to infer the parameters of stochastic differential equations. The computational efficiency of MCMC methods is highly depend on the chosen proposal distribution. A commonly used proposal distribution is Gaussian. In this kind of proposal, the covariance matrix must be well tuned. To tune it, adaptive MCMC methods can be used. In this thesis, we propose a new way of updating the covariance matrix using the variational Bayesian adaptive Kalman filter algorithm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this Master Thesis we discuss issues related to the measurement of the effective scattering surface, based on the Doppler Effect. Modeling of the detected signal was made. Narrowband signal filtering using low-frequency amplifier was observed. Parameters of the proposed horn antennas were studied; radar cross section charts for three different objects were received.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In modern society, the body health is a very important issue to everyone. With the development of the science and technology, the new and developed body health monitoring device and technology will play the key role in the daily medical activities. This paper focus on making progress in the design of the wearable vital sign system. A vital sign monitoring system has been proposed and designed. The whole detection system is composed of signal collecting subsystem, signal processing subsystem, short-range wireless communication subsystem and user interface subsystem. The signal collecting subsystem is composed of light source and photo diode, after emiting light of two different wavelength, the photo diode collects the light signal reflected by human body tissue. The signal processing subsystem is based on the analog front end AFE4490 and peripheral circuits, the collected analog signal would be filtered and converted into digital signal in this stage. After a series of processing, the signal would be transmitted to the short-range wireless communication subsystem through SPI, this subsystem is mainly based on Bluetooth 4.0 protocol and ultra-low power System on Chip(SoC) nRF51822. Finally, the signal would be transmitted to the user end. After proposing and building the system, this paper focus on the research of the key component in the system, that is, the photo detector. Based on the study of the perovskite materials, a low temperature processed photo detector has been proposed, designed and researched. The device is made up of light absorbing layer, electron transporting and hole blocking layer, hole transporting and electron blocking layer, conductive substrate layer and metal electrode layer. The light absorbing layer is the important part of whole device, and it is fabricated by perovskite materials. After accepting the light, the electron-hole pair would be produced in this layer, and due to the energy level difference, the electron and hole produced would be transmitted to metal electrode and conductive substrate electrode through electron transporting layer and hole transporting layer respectively. In this way the response current would be produced. Based on this structure, the specific fabrication procedure including substrate cleaning; PEDOT:PSS layer preparation; pervoskite layer preparation; PCBM layer preparation; C60, BCP, and Ag electrode layer preparation. After the device fabrication, a series of morphological characterization and performance testing has been done. The testing procedure including film-forming quality inspection, response current and light wavelength analysis, linearity and response time and other optical and electrical properties testing. The testing result shows that the membrane has been fabricated uniformly; the device can produce obvious response current to the incident light with the wavelength from 350nm to 800nm, and the response current could be changed along with the light wavelength. When the light wavelength keeps constant, there exists a good linear relationship between the intensity of the response current and the power of the incident light, based on which the device could be used as the photo detector to collect the light information. During the changing period of the light signal, the response time of the device is several microseconds, which is acceptable working as a photo detector in our system. The testing results show that the device has good electronic and optical properties, and the fabrication procedure is also repeatable, the properties of the devices has good uniformity, which illustrates the fabrication method and procedure could be used to build the photo detector in our wearable system. Based on a series of testing results, the paper has drawn the conclusion that the photo detector fabricated could be integrated on the flexible substrate and is also suitable for the monitoring system proposed, thus made some progress on the research of the wearable monitoring system and device. Finally, some future prospect in system design aspect and device design and fabrication aspect are proposed.