10 resultados para Papeeis son of Ammonios (see O.Mich. I, p. 201)
em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland
Resumo:
Digital reproduction, The National Library of Finland, Centre for Preservation and Digitisation, Mikkeli
Resumo:
Digital reproduction, The National Library of Finland, Centre for Preservation and Digitisation, Mikkeli
Resumo:
Ruokalista ja ohjelma
Resumo:
Kalciumjonen påverkar många aspekter av cellbiologi, från fertiliseringen av äggcellen till tillväxt och differentiering av alla typer av celler. Störningar i hur kalciumjonerna transporteras in och friges i cellerna kan ha stor betydelse för hur sjukdomar framskrider. På grund av detta är det viktigt att studera hur kalciumtransportörer såsom kalciumkanaler fungerar och hur de påverkar cellernas funktioner. I avhandlingen har klassiska transient receptorpotential (TRPC) katjonkanaler studerats. Dessa kanaler är permeabla för kalcium och aktiveras nedströms av G-proteinkopplade receptorer. Resultaten som presenteras i avhandlingen visar på nya funktioner för TRPC2- och TRPC3-kanalerna. Utöver TRPC3-kanalens roll i plasmamembranen, där den medverkar i receptorreglerat kalciuminflöde, tyder våra resultat på att TRPC3 har en potentiell intracellulär roll. Vid överuttryck av kanalen lokaliserade kanalen till endoplasmatiska nätverket där kanalen friger intracellulärt kalcium. TRPC2 har en viktig funktion i möss där kanalen reglerar hur djuret reagerar på feromoner. Våra resultat tyder på att TRPC2 är involverad i autokrin sfingosin-1-fosfat (S1P)-signalering. S1P som produceras i cellerna transporterades ut från cellerna varpå det aktiverade S1P2-receptorer på plasmamembranen. Diacylglycerol som bildas som en följd av aktivering av S1P2-receptorn aktiverade i sin tur inflöde av extracellulärt kalcium. Våra resultat indikerar att TRPC2 är kanalen som förmedlar detta kalciuminflöde. I sköldkörtelceller studerades nedströms effekter för TRPC2. Kanalen reglerade negativt cAMP-produktionen i cellerna vilket hämmar extracellulärt signalreglerat kinas 1/2 (ERK1/2). När uttrycket för TRPC2 minskades i cellerna, ökades produktionen av cAMP och fosforyleringen av ERK1/2, vilket resulterade i ökat uttryck för receptorn för sköldkörtelstimulerande hormon. Slutligen, presenterar vi resultat som tyder på att TRPC2 är viktigt för sekretion av prekursorn till sköldkörtelhormon.
Resumo:
12 x 19 cm
Resumo:
14 x 22 cm
Resumo:
The capacity of beams is a very important factor in the study of durability of structures and structural members. The capacity of a high-strength steel I-beam made of S960 QC was investigated in this study. The investigation included assessment of the service limits and ultimate limits of the steel beam. The thesis was done according to European standards for steel structures, Eurocode 3. An analytical method was used to determine the throat thickness, deformation, elastic and plastic moment capacities as well as the fatigue life of the beam. The results of the analytical method were compared with those obtained by Finite Element Analysis (FEA). Elastic moment capacity obtained by the analytical method was 172 kNm. FEA and the analytical method predicted the maximum lateral-torsional buckling (LTB) capacity in the range of 90-93 kNm and the probability of failure as a result of LTB is estimated to be 50%. The lateral buckling capacity meant that the I-beam can carry a safe load of 300 kN instead of the initial load of 600 kN. The beam is liable to fail shortly after exceeding the elastic moment capacity. Based on results in of the different approaches, it was noted that FEA predicted higher deformation values on the load-deformation curve than the analytical results. However, both FEA and the analytical methods predicted identical results for nominal stress range and moment capacities. Fatigue life was estimated to be in the range of 53000-64000 cycles for bending stress range using crack propagation equation and strength-life approach. As Eurocode 3 is limited to steel grades up to S690, results for S960 must be verified with experimental data and appropriate design rules.
Resumo:
The Amazonian region, the biggest rain forest of our planet, is known for its extraordinary biodiversity. Most of this diversity is still unexplored and new species of different taxa are regularly found there. In this region, as in most areas of the world, insects are some of the most abundant organisms. Therefore, studying this group is important to promote the conservation of these highly biodiverse ecosystems of the planet. Among insects, parasitoid wasps are especially interesting because they have potential for use as biodiversity indicators and biological control agents in agriculture and forestry. The parasitoid wasp family Ichneumonidae is one of the most species rich groups among the kingdom Animalia. This group is still poorly known in many areas of the world; the Amazonian region is a clear example of this situation. Ichneumonids have been thought to be species poor in Amazonia and other tropical areas. However, recent studies are suggesting that parasitoid wasps may be quite abundant in Amazonia and possibly in most tropical areas of the world. The aim of my doctoral thesis is to study the species richness and taxonomy of two of the best known ichneumonid subfamilies in the Neotropical region, Pimplinae and Rhyssinae. To do this I conducted two extensive sampling programs in the Peruvian Amazonia. I examined also a large number of Neotropical ichneumonids deposited to different natural history museums. According to the results of my thesis, the species richness of these parasitoids in the Amazonian region is considerably higher than previously reported. In my research, I firstly further develop the taxonomy of these parasitoids by describing many new species and reporting several new faunistic records (I, II, III). In this first part I focus on two genera (Xanthopimpla and Epirhyssa) which were thought to be rather species poor. My thesis demonstrates that these groups are actually rather species rich in the Amazonian region. Secondly, I concentrate on the species richness of these parasitoids in a global comparison showing that the Neotropical region and especially the Peruvian Amazonia is one of the most species rich areas of Pimpliformes ichneumonids (V). Furthermore, I demonstrate that with the data available to date no clear latitudinal gradient in species richness is visible. Thirdly, increasing the macroecological knowledge of these parasitoids I show that some previously unreported ichneumonid subfamilies are present in the Amazonian region (IV). These new insights and the results of the global comparison of ichneumonid inventories suggest that the previous belief of low diversity in the tropics is most likely related to a lack of sampling effort in the region. Overall, my research increases the knowledge of Neotropical ichneumonids highlighting the importance of Peruvian Amazonia as one of the diversity hotspots of parasitoid wasps.
Resumo:
Sexual dimorphism is commonly understood as differences in external features, such as morphological features or coloration. However, it can more broadly encompass behavior and physiology and at the core of these differences is the genetic mechanism – mRNA and protein expression. How, and which, molecular mechanisms influence sexually dimorphic features is not well understood thus far. DNA, RNA and proteins are the template required to create the phenotype of an individual, and they are connected to each other via processes of transcription and translation. As the genome of males and females are almost identical with the exception of the few genes on the sex chromosome or the sex-determining alleles (in the case of organisms without sex chromosomes), it is likely that many of the downstream processes resulting in sexual dimorphism are produced by changes in gene regulation and result from a regulatory cascade and not from a vastly different gene composition. Thus, in this thesis a systems biology approach is used to understand sexual dimorphism at all molecular levels and how different genomic features, e.g. sex chromosome evolution, can affect the interplay of these molecules. The threespine stickleback, Gasterosteus aculeatus, is used as the model to investigate molecular mechanisms of sexual dimorphism. It has well-characterized ecology and behavior, especially in the breeding season when sexual dimorphism is high. Moreover, threespine stickleback has a recently evolved Y chromosome in the early stages of sex chromosome evolution, characterized by a lack of recombination leading to degeneration (i.e. gene loss). The aim of my thesis is to investigate how the genotype links to the molecular phenotype and relates to differences in molecular expression between males and females. Based on previous research on sex differences in mRNA expression, I investigated sex-biased protein expression in adult fish outside the breeding season to see if differences persisted after translation. As sex-biased expression also prevailed in the proteome and previous transcription expression seemed to be related to the sex chromosomes, I investigated the genome level with a particular focus on the sex-chromosomes. I characterized the status of Y chromosome degeneration in the threespine stickleback and its effects on gene function. Furthermore, since the degeneration process leaves genes in a single copy in males, I examined whether the resulting dosage difference of messenger RNA for hemizygous genes is compensated as it is in other organisms. In addition, threespine sticklebacks have wellcharacterized behavioral differences related to the male’s social status during the breeding season. To understand the connection between the genotype and behavior, I examined gene expression patterns related to breeding behavior using dominant and subordinate males as well as female