7 resultados para Paclitaxel pharmacokinetics

em Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cytochrome P450 (CYP) enzymes play a pivotal role in the metabolism of many drugs. Inhibition of CYP enzymes usually increases the plasma concentrations of their substrate drugs and can thus alter the safety and efficacy of these drugs. The metabolism of many widely used nonsteroidal antiinflammatory drugs (NSAIDs) as well as the metabolism of the antidepressant venlafaxine is nown to be catalyzed by CYP enzymes. In the present studies, the effect of CYP inhibition on the armacokinetics and pharmacodynamics of NSAIDs and venlafaxine was studied in clinical trials with healthy volunteers and with a crossover design, by using different antifungal agents as CYP inhibitors. The results of these studies demonstrate that the inhibition of CYP enzymes leads to increased concentrations of NSAIDs. In most cases, the exposure to ibuprofen, diclofenac, etoricoxib, and meloxicam was increased 1.5to 2 fold when they were used concomitantly with antifungal agents. CYP2D6 inhibitor, terbinafine, substantially increased the concentration of parent venlafaxine, whereas the concentration of active moiety of venlafaxine (parent drug plus active metabolite) was only slightly increased. Voriconazole, an inhibitor of the minor metabolic pathway of venlafaxine, produced only minor changes in the pharmacokinetics of venlafaxine. These studies show that an evident increase in the concentrations of NSAIDs may be expected, if they are used concomitantly with CYP inhibitors. However, as NSAIDs are generally well tolerated, use of single doses of NSAIDs concomitantly with CYP inhibitors is not likely to adversely affect patient safety, whereas clinical relevance of longterm concomitant use of NSAIDs with CYP inhibitors needs further investigation. CYP2D6 inhibitors considerably affect the pharmacokinetics of venlafaxine, but the clinical significance of this interaction remains unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proportion of elderly people over 65 years of age in Finland is expected to grow to over 25% by the 2025. It has been estimated that elderly people today consume nearly 40% of all drugs. Age brings about number of physiological changes that may affect the disposition, metabolism and excretion of drugs. The function of heart, lungs, liver and kidneys decreases even in healthy people, as they get older. The proportion of total body water decreases and the relative fat percentage increases. Also several other factors such as concurrent diseases, concomitant medication and nutritional factors have an effect on drug therapy in elderly. Age increases the risk of adverse drug reactions, which most often are dose-dependent. Despite all this there are not enough studies involving the elderly people and the elderly are most often excluded from clinical trials. Oxycodone is a strong opioid analgesic, which is used to treat moderate or severe pain. Paracetamol is a widely used nonopioid analgesic, which has become popular in the treatment of pain in many patient groups. In this series of studies the pharmacokinetics of oral and intravenous oxicodone as well as intravenous paracetamol in the elderly and young adult patients were investigated. Also a study investigating the interaction of oral antibiotic clarityhromycin, a known cytochrome P450 (CYP) 3A4 inhibitor, with oxycodone pharmacokinetics and pharmacodynamics in elderly and young healthy volunteers was carried out. The pharmacokinetics of oxycodone showed a clear age depency. Patients over 70 years had 50-80% higher mean exposure to oral oxycodone and a twofold greater plasma concentration than young adults 12 h after ingestion of the drug. Elderly patients had 40-80% greater exposure to intravenous oxycodone and patients over 80 years had over twofold greater plasma concentrations 8 h post dose than the young adults. The elderly patients had also greater exposure to intra venous paracetamol compared to young adults. Clarithromycin increased the exposure to oral oxycodone in both young and elderly volunteers. The elderly had marked interindividual variation in the pharmacokinetics and pharmacodynamics when clarithromycin was given concomitantly with oxycodone. Because the pharmacokinetics of oxycodone and intravenous paracetamol depend on the age of the subject, it is important to titrate the analgesic dose individually in the elderly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patients treated in intensive care units require sedation and analgesia. However, sedative drugs also have potential adverse effects, and there is no single ideal sedativeanalgesic drug for these patients. Dexmedetomidine is an apha2-adrenoceptor agonist licenced for sedation of intensive care patients and patients undergoing surgery and other invasive procedures. Several routes of parenteral administration (intravenous, intramuscular, subcutaneous and intranasal) have been utilized. In the present series of studies, the pharmacokinetics and pharmacodynamics of intranasally administered dexmedetomidine as well as the gastrointestinal effects of intravenous dexmedetomidine were determined in healthy volunteers. Pharmacokinetics of dexmedetomidine during long lasting, high-dose infusions were characterized in intensive care patients. The bioavailability of intranasal dexmedetomidine was relatively good (65%), but interindividual variation was large. Dexmedetomidine significantly inhibited gastric emptying and gastrointestinal transit. In intensive care patients, the elimination half-life of dexmedetomidine was somewhat longer than reported for infusions of shorter duration and in less ill patients or healthy volunteers. Dexmedetomidine appeared to have linear pharmacokinetics up to the studied dose rate of 2.5 μg/kg/h. Dexmedetomidine clearance was decreasing with age and its volume of distribution was increased in hypoalbuminaemic patients, resulting in a longer elimination half-life and context-sensitive half-time. Intranasally administered dexmedetomidine was efficacious and well tolerated, making it appropriate for clinical situations requiring light sedation. The clinical significance of the gastrointestinal inhibitory effects of dexmedetomidine should be further evaluated in intensive care patients. The possibility of potentially altered potency and effect duration should be taken into account when administering dexmedetomidine to elderly or hypoalbuminaemic patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oxycodone is an opioid used in the treatment of moderate or severe pain. It is principally metabolized in the liver by cytochrome P450 3A (CYP3A) enzymes whereas approximately 10% is metabolized by CYP2D6. Little is known about the interactions between oxycodone and other drugs, herbals and nutritional substances. In this work the effects of CYP3A inducers rifampicin and St. John’s wort and CYP3A inhibitors voriconazole, grapefruit juice, ritonavir and lopinavir/ritonavir were investigated on the pharmacokinetics and pharmacodynamics of oxycodone. All studies were randomized, balanced, placebo-controlled crossover clinical studies in healthy volunteers. The plasma concentrations of oxycodone and its metabolites were determined for 48 hours and pharmacodynamic parameters were recorded for 12 hours in each study. Pharmacokinetic parameters were calculated by noncompartmental methods. Rifampicin decreased the plasma concentrations, analgesic effects, and oral bioavailability of oral oxycodone. St. John’s wort reduced the concentrations of oxycodone and diminished the self-reported drug effect. Voriconazole increased the exposure to oral oxycodone by 3.6-fold whereas grapefruit juice, which inhibits predominantly the intestinal CYP3A, elevated the mean concentrations of oxycodone by 1.7-fold. Ritonavir and lopinavir/ritonavir increased the mean AUC of oxycodone by 3.0- and 2.6-fold, respectively, and prolonged its elimination half-life. In spite of increased oxycodone plasma concentrations during concomitant administration of CYP3A inhibitors, the analgesic effects were not increased. These studies show that the induction or inhibition of CYP3A alters the pharmacokinetics and pharmacologic effects of oxycodone. The exposure to oxycodone decreased after induction and increased after inhibition of CYP3A. As a conclusion, the clinicians should avoid concomitant administration of CYP3A inducers or inhibitors and oral oxycodone. If this is not possible, they should be prepared to interactions leading to impaired analgesia after CYP3A inducers or increased adverse effects after CYP3A inhibitors and oral oxycodone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human body eliminates foreign compounds primarily by metabolizing them to hydrophilic forms to facilitate effective excretion through the kidneys. Cytochrome P450 (CYP) enzymes in the liver and intestine contribute to the metabolism of many drugs. Pharmacokinetic drugdrug interactions occur if the activity of CYPs are inhibited or induced by another drug. Prescribing multiple drugs to the improve effectiveness of therapy or to treat coexisting diseases is a common practice in clinical medicine. Polypharmacy predisposes patients to adverse effects because of the profound unpredictability in CYP enzymatic-mediated drug metabolism. S-ketamine is a phencyclidine derivative which functions as an antagonist of the N-methyl-Daspartate (NMDA) receptor in the central nervous system. It is a unique anaesthetic producing “dissociative anaesthesia” in high doses and analgesia in low doses. Studies with human liver microsomes suggest that ketamine is metabolized primarily via CYP3A4 and CYP2B6 enzymes. In this thesis, in healthy volunteers, randomized and controlled cross-over studies were conducted to investigate the effects of different CYP inducers and inhibitors on the pharmacokinetics and pharmacodynamics of oral and intravenous S-ketamine. The plasma concentrations of ketamine and its metabolite, norketamine, were determined at different timepoints over a 24 hour period. Other pharmacodynamic variables were examined for 12 hours. Results of these studies showed that the inhibition of the CYP3A4 pathway by clarithromycin or grapefruit juice increased the exposure to oral S-ketamine by 2.6- and 3.0-fold. Unexpectedly, CYP3A4 inhibition by itraconazole caused no significant alterations in the plasma concentrations of oral S-ketamine. CYP3A4 induction by St. John´s wort or rifampicin decreased profoundly the concentrations of oral S-ketamine. However, after rifampicin, there were no significant differences in the plasma concentrations of S-ketamine when it was administered intravenously. This demonstrated that rifampicin inhibited the metabolism of Sketamine at the intestinal level. When CYP2B6 was inhibited by ticlopidine, there was a 2.4- fold increase in the exposure of S-ketamine. These studies demonstrated that low dose oral Sketamine is metabolized both via CYP3A4 and CYP2B6 pathways. The concomitant use of drugs that affect CYP3A4 or CYP2B6, during oral S-ketamine treatment, may cause clinically significant drug-drug interactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

University of Turku, Faculty of Medicine, Department of Cardiology and Cardiovascular Medicine, Doctoral Programme of Clinical Investigation, Heart Center, Turku University Hospital, Turku, Finland Division of Internal Medicine, Department of Cardiology, Seinäjoki Central Hospital, Seinäjoki, Finland Heart Center, Satakunta Central Hospital, Pori, Finland Annales Universitatis Turkuensis Painosalama Oy, Turku, Finland 2015 Antithrombotic therapy during and after coronary procedures always entails the challenging establishment of a balance between bleeding and thrombotic complications. It has been generally recommended to patients on long-term warfarin therapy to discontinue warfarin a few days prior to elective coronary angiography or intervention to prevent bleeding complications. Bridging therapy with heparin is recommended for patients at an increased risk of thromboembolism who require the interruption of anticoagulation for elective surgery or an invasive procedure. In study I, consecutive patients on warfarin therapy referred for diagnostic coronary angiography were compared to control patients with a similar disease presentation without warfarin. The strategy of performing coronary angiography during uninterrupted therapeutic warfarin anticoagulation appeared to be a relatively safe alternative to bridging therapy, if the international normalized ratio level was not on a supratherapeutic level. In-stent restenosis remains an important reason for failure of long-term success after a percutaneous coronary intervention (PCI). Drug-eluting stents (DES) reduce the problem of restenosis inherent to bare metal stents (BMS). However, a longer delay in arterial healing may extend the risk of stent thrombosis (ST) far beyond 30 days after the DES implantation. Early discontinuation of antiplatelet therapy has been the most important predisposing factor for ST. In study II, patients on long-term oral anticoagulant (OAC) underwent DES or BMS stenting with a median of 3.5 years’follow-up. The selective use of DESs with a short triple therapy seemed to be safe in OAC patients, since late STs were rare even without long clopidogrel treatment. Major bleeding and cardiac events were common in this patient group irrespective of stent type. In order to help to predict the bleeding risk in patients on OAC, several different bleeding risk scorings have been developed. Risk scoring systems have also been used also in the setting of patients undergoing a PCI. In study III, the predictive value of an outpatient bleeding risk index (OBRI) to identify patients at high risk of bleeding was analysed. The bleeding risk seemed not to modify periprocedural or long-term treatment choices in patients on OAC after a percutaneous coronary intervention. Patients with a high OBRI often had major bleeding episodes, and the OBRI may be suitable for risk evaluation in this patient group. Optical coherence tomography (OCT) is a novel technology for imaging intravascular coronary arteries. OCT is a light-based imaging modality that enables a 12–18 µm tissue axial resolution to visualize plaques in the vessel, possible dissections and thrombi as well as, stent strut appositions and coverage, and to measure the vessel lumen and lesions. In study IV, 30 days after titanium-nitride-oxide (TITANOX)-coated stent implantation, the binary stent strut coverage was satisfactory and the prevalence of malapposed struts was low as evaluated by OCT. Long-term clinical events in patients treated with (TITANOX)-coated bio-active stents (BAS) and paclitaxel-eluting stents (PES) in routine clinical practice were examined in study V. At the 3-year follow-up, BAS resulted in better long-term outcome when compared with PES with an infrequent need for target vessel revascularization. Keywords: anticoagulation, restenosis, thrombosis, bleeding, optical coherence tomography, titanium

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a novel intracoronary imaging application for the assessment of native lesions and coronary stents. The purpose of this thesis was to evaluate the safety and feasibility of frequency-domain OCT (FD-OCT) based on experiences of the Satakunta Central Hospital (I). Early vascular healing was evaluated after implantation of endothelial progenitor cell capturing (II) and bio-active titanium-nitride-oxide coated stents (III) in two studies, each with 20 patients. Vascular healing was also compared after implantation of bio-active and everolimus-eluting stents on 28 patients after 9-month follow-up (IV). Long-term vascular healing of bio-active and paclitaxel-eluting stents was assessed in the last study with 18 patients (V). The results indicate that FD-OCT is safe and feasible (I). Both bio-active and endothelial progenitor cell capturing stents showed near-complete endothelialisation after one-month follow-up, which is desirable when prolonged dual anti-platelet therapy needs to be avoided after stenting (II and III). Endothelialisation of bio-active stents showed a predictable pattern at mid-term and long-term follow up (IV and V). Endothelialisation of everolimus-eluting stents was not complete at 9 months follow-up, which may suggest that interruption of dual antiplatelet therapy at this time point may not be safe (IV). Finally, delayed vascular healing may be present in patients treated with paclitaxel-eluting stents as long as 4 years from implantation, which reinforces the previously raised concerns on the long-term safety of this device (V).